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ABSTRACT 

The purpose of the current study was to identify the potential association between Single Nucleotide 
Polymorphism (SNP) TGFβ1 +915 (C or G) in codon 25 and Primary Open Angle Glaucoma (POAG). 
Overall, 88 cases with POAG and a control group of 52 healthy individuals were recruited from the First 
Ophthalmology Department of Athens University. DNA was isolated from whole blood samples and 
genotype frequencies for the polymorphism rs1800471 (G915C, Arg25Pro) of the TGF-β1 gene were 
assessed. 
Genotype distribution frequencies for the polymorphism rs1800471 (G915C, Arg25Pro) of the TGF-β1 gene 
were not statistically different between patients with POAG and control subjects. 
The present study failed to determine any significant genotypic association with POAG, despite the fact that 
the presence of the C allele was scarcely increased in the POAG when compared with the control group. 
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INTRODUCTION

Glaucoma is defined as progressive optic neuropathy, 
which is commonly related to high Intraocular Pressure 
(IOP), Extracellular Matrix (ECM) remodeling, and ocular 
vascular changes. Transforming Growth Factor-beta 
(TGF-β) is a multifunctional peptide, belonging to a family 
of cytokines present in many cell types, involved in 

regulating proliferation, differentiation, adhesion, 
migration, and a number of other functions. Receptors of 
TGF-β are present in many cells, and the TGF-β protein 
regulates many other growth factors, both positively and 
negatively. In processes of wound healing and scarring, 
TGF-β plays a central role, throughout the body [1-3], 
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and is present in normal Aqueous Humor (AH) [4, 5] with 
significantly high levels in the AH of glaucomatous 
patients, as indicated in numerous studies of the past 20 
years [6-17]. A number of studies [17-19] suggest that 
the outflow system of the human eye, especially the 
Trabecular Meshwork (TM), is sensitive to TGF-β; the 
biological effects in TM is indicated by the high levels of 
TGF-β found in the AH of glaucomatous patients.  
Transforming Growth Factor-beta stimulates fibroblast 
activities, as the most potent growth factor in AH [20, 
21]. It has been hypothesized that the pathogenesis of 
POAG, leading to pathological alterations with 
subsequent aqueous outflow deficiency, is due to 
accumulated damage to the TM and Schlemm’s canal 
[22], such as chronic scarring and fibrosis of the TM. Both 
TGF-β2 and TGF-β1 seem to be involved in the 
pathogenesis of glaucomas, where TGF-β2 is the 
predominant isoform in normal human AH. However, 
there are significantly increased levels of TGF-β2 in the 
AH of patients with POAG [6], and significantly high 
aqueous levels of latent and active TGF-β1 in patients 
with exfoliative glaucoma and exfoliation syndrome [23]. 
Furthermore, numerous studies have claimed that TGF-
β1 influences the TM of patients with POAG. 
Transforming Growth Factor-beta mainly limits aqueous 
outflow with subsequent elevation of IOP and increases 
risk of clinically significant optic neuropathy [24-29]. 
The pathogenesis of neurodegenerative, ocular, and 
vascular diseases has been shown to involve TGF-β 
signaling, as well as remodeling of ECM [30, 31]. 
Dysfunctional TGF-β signaling seems to be involved, 
partially, in glaucoma pathogenesis, since there seems to 
be an overlap between the cascade of pathogenesis and 
responses caused by TGF-β in cells and tissues. Hence, a 
potential therapeutic target in glaucoma might be the 
modulation of TGF- β response in cells and tissues [32]. It 
is important to mention that a number of polymorphisms 
have been identified for the TGF-β1 encoding gene, 
which is located on chromosome 19q13. Allelic variations 
have been found in the 5′ flanking region of the TGF-β1 
gene, such as those at positions –988, –800, and –509, 
while others are located in the coding region (i.e. codons 
10 and 25 of exon 1, and codon 263 of exon 5). 
Furthermore, a C insertion has been observed in the 5′ 
untranslated region at position +72 [33]. Transforming 
Growth Factor-beta 1 production varies from one person 
to another, and this is partly related to the polymorphism 
of the TGF-β1 gene at codons 10 and 25 [34]. These 
changes have potential functional importance by 
modulating TGF-β1 production. A polymorphism 
detected at codon 10 is expressed as a change of the 

amino acid Leu to the Pro, while another polymorphism 
at codon 25 is due to Pro's replacement by Arg [33]. In 
the current study, the authors aimed at identifying the 
potential association between the Single Nucleotide 
Polymorphism (SNP) TGF-β1 +915 (C or G) in codon 25, 
and POAG. This polymorphism is one of the most studied 
and has been targeted for potential correlation with 
pathological conditions yet has not been investigated for 
its association with ocular pathology [35-37]. 

MATERIALS and METHODS 

The current study was conducted during years 2009 to 
2010 at the First Ophthalmology Department of 
University of Athens in G. Gennimatas Hospital, after 
obtaining ethical approval from the Institutional Ethical 
Committee. A total of 88 cases with POAG and 52 healthy 
controls (to serve as the positive control group) were 
recruited from the First Ophthalmology Department of 
Athens University (Table 1), following explanation of the 
research objectives and obtaining their informed 
consent. Concerned ophthalmologists performed the 
clinical examination of all patients. Only patients, who 
had glaucoma in both eyes, with one of the eyes with 
previous glaucoma surgery history being either 
trabeculectomy or tube-shunt surgery, were included in 
the patient group. Glaucoma diagnosis was based on 
glaucomatous optic nerve and visual field changes. 
Patients with any underlying ocular disorders, other than 
glaucoma, or a history of previous ocular surgery, other 
than a glaucoma surgery, were not included. Using a 
special form, details of the clinical, epidemiological, and 
ocular variables of each patient were carefully recorded. 
 
Table 1: Characteristics of the Study Subjects 

Demographic characteristics POAG Controls 

 n = 88 n = 52 

Age range (years) 42-83 43-84 

Males 46 24 

Females 42 28 

POAG = Primary Open Angle Glaucoma, n = Number. 

Single Nucleotide Polymorphism Technical Analysis 
DNA was isolated from whole blood samples with high 
pure Polymerase Chain Reaction (PCR) template 
preparation kit (Roche Life Science), according to the 
manufacturer’s instructions. Genotype frequencies for 
the polymorphism rs1800471 (G915C and Arg25Pro) of 
the TGF-β1 gene were assessed with an assay described 
previously [38], using a Light Cycler instrument (Roche 
Life Science). In details, 80 ng of isolated DNA was used 
as the template for the amplification of a 523-bp 
segment that included codon 25, with the use of primers 



 
 

Med Hypothesis Discov Innov Ophthalmol. 2018; 7(1)  
 

27 TGF-Β1 G915C POLYMORPHISM AND PRIMARY OPEN ANGLE GLAUCOMA 

Arg25Pro-for (5’- CTA GGT TAT TTC CGT GGG - 3’) and 
Arg25Pro-rev (5’- CCT TGG CGT AGT AGT CG-3’)  at a 
concentration of 0.5 μM. Labeled probes (5’-GCT ACC 
GCT GCT GTG GCT ACT GGT GCT-3’-fluorescein and LC-
Red640-5’-ACG CCT GGC CCG CCG-Ph-3’) were used at a 
concentration of 0.2 μM, along with 3 mM of MgCl2, 5% 
(v/v) DMSO, and 1Χ LC-FastStart DNA master 
hybridization probes (Roche Life Science). Samples were 
initially heated to 95°C for 10 minutes and subsequently 
submitted to 45 cycles at 95°C for 10 seconds, 59°C for 
10 seconds, and 72°C for 20 seconds. Melting curve 
analysis included a denaturation step for 1 minute at 
95°C, a hybridization step of 30 seconds at 40°C, and 
then ramping to 80°C at a rate of 0.2°C/second. The 
fluorescein-labeled probe was designed to hybridize to 
nucleotides 2012 to 2038 of the TGF-β1 gene (GenBank: 
X05839) while the LC-Red640-labeled probe 
corresponded to the adjacent region, at 2040 to 2054, of 
the aforementioned gene. The detection of the alleles 
was carried out with the implementation of the 
Fluorescence Resonance Energy Transfer (FRET) 
principle. Typically, the melting curve of a DNA 
homozygous for Arg25 presented a single peak at 51°C, 
while in case of heterozygosity, 2 peaks, at 51°C and 
65°C, were observed (Fig 1). In the current study no 
Pro25 homozygous individuals were identified. Data 
were analyzed using the SPSS software, version 17.0 
(SPSS Inc., Chicago, IL). All tests were 2-tailed and 
differences with P values of less than 0.05 were 
considered significant. For estimation of the association 
of SNP with the development of POAG, the Fisher’s exact 
test was applied. 
 

 
Figure 1.  Melting Curve Analysis of a Heterozygous Sample for 

the Arg25Pro Polymorphism (purple line) and of a Homozygous 

Arg25 Sample (green line)  

Both alleles present typical melting points at 51°C (Arg25) and 

65°C (Pro25). A no template negative control was included in 

the analysis (blue line). 

 

 

RESULTS 

In the current analysis, genotype frequencies for the 
rs1800471 polymorphism (G915C, Arg25Pro) of the TGF-
β1 gene were determined. No significant differences in 
genotype distribution could be established between 
patients with POAG and control individuals (Table 2). 
Although the presence of the C allele was slightly 
increased in the POAG when compared with the control 
group, this difference was not statistically significant. 
 
Table 2. Genotype Distribution and Allele Frequency in Cases 

with Primary Open Angle Glaucoma and the Corresponding 

Control Group 

 POAG Control P value 

Arg25Arg (GG) 72 (81.8%) 45 (86.5%) 0.638 

Arg25Pro (GC) 16 (18.2%) 7 (13.5%)  

Total 88 (100%) 52 (100%)  

C allele frequency 0.091 0.067 0.653 

POAG = Primary Open Angle Glaucoma; Arg25Arg (GG), 

Arg25Pro (GC): Genotype Frequencies for the rs1800471 

Polymorphism (G915C, Arg25Pro) of the TGF-β1 Gene. 

 
The data are expressed as frequencies (percentages). P 
values were assessed by Fisher’s exact test. 

DISCUSSION 

According to the findings of the present study, no 
significant differences in genotype distribution 
frequencies for the rs1800471 polymorphism (G915C and 
Arg25Pro) of the TGF-β1 gene could be established 
between patients with POAG and control subjects. 
Management of glaucoma is essential for maintaining 
retinal health and normal vision. Therefore, the discovery 
of mechanisms involved in glaucoma is essential for the 
development of preventive strategies and effective 
therapies. Zhao et al. [27] examined changes in gene and 
protein expression of human TM cells following exposure 
to TGF-β1 and TGF-β2. Both isoforms resulted an 
overexpression of ECM protein-encoding genes. 
Specifically, following TGF-β1 exposure, the increase in 
expression of cytoskeletal tropomyosin 1α and proteins 
was more pronounced, and the redox enzyme 
thioredoxin reductase 1 expression was decreased. 
Transforming Growth Factor-beta seems to influence IOP 
with a mechanism that seems to involve the contraction 
of TM cells, which may be affected by TGF-β1. In vitro, 
the application of TGF-β1 in a culture of bovine TM cells 
in collagen gel, resulted in contraction of the collagen 
gel, which was dose-dependent [28]. Transforming 
Growth Factor-beta 1 triggers actin stress fibers 
formation in TM cells, mediated by protein kinase C and 
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`Rho GTPase [28], and influences contraction of TM cells 
and hence AH outflow facility. In vitro, action of the TGF-
β1 increases human TM cell expression of connective 
tissue growth factor [39]

 
and elastin production from TM 

cells, which could potentially play a role in outflow 
resistance [40]. A myofibroblast-like phenotype is 
induced by TGF-β1 in TM cells. This is evident by an 
increase in α-Smooth Muscle Actin (αSMA) expression 
and production, which is dose-dependent. Human TM 
cells, which are αSMA-positive, have a spindle shape and 
contain stress fibers. In vitro, these cells signify an 
increase in contractility and a decrease in outflow facility 
[24]. Altered actin cytoskeletal fibers contribute in the 
pathophysiology of both primary open angle and steroid-
induced glaucomas [41-43]. 
A number of in vivo studies have also shown the effect of 
TGF-β1 in glaucoma with different mechanisms. In 
glaucomatous eyes, Thrombospondin-1, which activates 
TGF-β, influences the juxtacanalicular region of TM [44]. 
Transforming Growth Factor-beta 1 and dexamethasone 
enhance the expression of thrombospondin-1 in TM [45]. 
Furthermore, in vitro TGF-β1 exposure increases TM-
inducible glucocorticoid response protein gene 
expression and TM cell myocilin [46]. Finally, IL-6 
expression, which is induced by TGF-β1, results in 
transcriptional activation of the TGF-β1 promoter [47], 
and may serve an IOP regulator by controlling AH 
outflow. There is also evidence of the role of TGF-β in 
structural changes of lamina cribrosa. In the glial cells 
around the lamina cribrosa in an animal glaucoma model, 
elevated TGF-β1 and TGF-β2 levels, suggested the 
potential role of TGF-β in lamina cribrosa remodeling 
[48]. An in vitro study by Kirwan et al. [49]

 
suggested that 

in glaucoma, an increased activation of TGF-β1 in the 
lamina cribrosa may cause optic nerve head remodeling. 
Two of the most studied TGF-β1 polymorphisms are 
located at codons 10 and 25. The homozygous Arg/Arg 
genotype at codon 25 and the presence of the Pro allele 
at codon 10 has been associated with increased TGF-β1 
production [50]. This study aimed at evaluating whether 
TGF-β1 gene +915 (C or G) in codon 25 polymorphisms 
has a role on the development of POAG. The association 
of the TGFβ1 -509C > T SNP with POAG in patients from 
India was analyzed in a study by Sripriya et al. [35]. The 
statistical analysis did not suggest any significant 
difference in the distribution of allele and genotype 
frequencies and the study showed no association 
between the TGFβ1-509C > T polymorphism and POAG.  
In the current study, AS failed to find any significant 
genotypic association with POAG, despite the fact that 

the presence of the C allele was scarcely increased in the 
POAG when compared with the control group. 
Sandhya et al. [36] investigated the TGFβ1 codon 10 
polymorphism in patients with myopia from a South 
Indian sample. They found that individuals with the CC 
genotype might carry gender-specific risk for myopia 
progression, yet a strong association with high myopia 
was not detected. The current study failed to identify any 
significant genotypic association with POAG, despite the 
fact that the presence of the C allele was scarcely 
increased in POAG when compared with the control 
group. However, this difference was not statistically 
significant. A larger study and a review of the genetics of 
glaucoma did not manage to identify abnormalities in the 
genes encoding TGF-β [51, 52]. An active TGF-β1 isomer, 
which was transferred with adenovirus resulted in a 
decrease in αSMA, as shown by Robertson et al. [53]. 
However, anatomic changes resembled greater Primary 
Angle Closure Glaucoma (PACG) than POAG [53]. Inatani 
et al. [11] showed that in the AH of eyes with POAG, the 
level of the biologically active TGF-β2 was higher 
compared with eyes with PACG, pseudoexfoliative 
Glaucoma (XFG), and secondary glaucoma associated 
with uveitis. Multiple isoforms of TGF-β have also been 
measured by a number of studies. There are differences 
in the effect of TGF-β2, TGF-β1, and TGF-β3 in different 
types of glaucoma. More specifically, in POAG, only TGF-
β2 is significantly elevated whereas in other forms of 
glaucoma, TGF-β1 and TGF-β3 show greater elevation 
[12, 13]. 
Transforming Growth Factor-beta 1 and TGF-β2 proteins 
seem to be potential new targets for glaucoma 
treatment as they have been proved as modulators of 
ECM remodeling, aqueous outflow facility, and 
inflammation in glaucomatous eyes. Analysis of the other 
polymorphisms in the regulatory region of the TGF-β1 
gene could provide better understanding of the role of 
TGF-β in POAG pathogenesis. However, as stated by a 
recent review [54], due to the stronger correlation of 
TGF-β2 with the pathogenesis of POAG, TGF-β2 may be a 
more promising target for future investigation of 
polymorphisms. To the best of the author’s knowledge, 
this is the first report that has examined this specific 
polymorphism and its association with POAG. Limitations 
of the study are the small number of patients and the 
limited number of polymorphisms examined. Further 
studies are required in order to establish specific 
relationships. Studies with extensive data on glaucoma 
may provide better opportunities in this field. 
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