

Letter to the Editor

Coronavirus disease pandemic and dry eye disease: A methodology concern on the causal relationship

Mashael Al-Namaeh¹

¹ Eye Research Center, Wilmington, DE, USA

Dear Editor

Digital screen use reduces tear breakup time, increases ocular surface staining, and causes meibomian gland dysfunction, all of which contribute to dry eye disease (DED) [1]. A pre-pandemic cross-sectional study found a high prevalence of DED among young to middle-aged visual display terminal users with a female preponderance [2]. Inomata et al. found that users with screen exposure for more than 8 h/day had a significantly higher incidence of symptomatic DED than those with screen exposure for less than 4 h/day [3].

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, emerged in December 2019 in Wuhan, China [4]. Increased usage of visual display terminals during lockdown worsened DED symptoms in patients [5]. Napoli et al. estimated a global increase in DED prevalence during the pandemic and termed it "quarantine dry eye" [6]. An increasing number of people have been using digital devices to work from home, attending online classes, and wearing masks since the COVID-19 outbreak. These factors may contribute to the development of DED and asthenopia [7-9]. In an online survey during the COVID-19 pandemic, 10.3% of students reported the development or deterioration of ocular discomfort, with 57% having a pathologic ocular surface disease index (OSDI) score [8]. Respondents with pre-existing DED reported worsening of DED symptoms during the pandemic [10].

Moreover, wearing masks can cause DED. A plausible mechanism is air leakage leading to tear evaporation and eye discomfort, as described in the context of continuous positive airway pressure treatment [8, 11]. In a previous study, healthcare providers wearing a face mask for more than 6 h/day had a significantly higher OSDI score than did healthy individuals [12]. Krolo et al. found that the OSDI score was higher in participants wearing face masks for 3–6 h/day than in those wearing face masks for less than 3 h/day, with a female preponderance. Patients with a history of DED showed greater disturbances during the mask-wearing period than those with no history of DED, irrespective of the daily mask wearing duration [13].

Based on the literature, a causal relationship between DED and COVID-19 is plausible. However, studies are lacking with efficient designs and robust conclusions investigating whether this increased incidence and severity of DED during the COVID-19 pandemic is causal or coincidental. The cause-and-effect relationship cannot be confirmed with cross-sectional studies because establishing a temporal sequence is impossible, and cohort studies are preferred [14]. Thus, the current literature suggests that establishing a causal relationship between the COVID-19 pandemic and DED remains challenging. The increased severity and incidence of DED during the COVID-19 pandemic should be investigated using clinical trials and longitudinal studies. Furthermore, confounding factors, such as age, sex, systemic comorbidities, pre-existing ocular disease, and history of ocular and systemic drugs, in patients with DED should be controlled during statistical analyses before causation is suspected [15] (Figure 1). Future studies addressing these limitations are warranted to confirm the causal relationship between COVID-19 and DED.

Correspondence: Mashael Al-Namaeh, Eye Research Center, Wilmington, DE, 19087, USA. Email: alnamaeh@eyeresearchcenter.org ORCID iD: https://or-cid.org/0000-0002-5253-1175

How to cite this article: Al-Namaeh M. Coronavirus disease pandemic and dry eye disease: A methodology concern on the causal relationship. Med Hypothesis Discov Innov Ophthalmol. 2022 Spring; 11(1): 42-43. https://doi.org/10.51329/mehdiophthal1444

Received: 10 March 2022; Accepted: 01 April 2022

Copyright © Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited. $\bigcirc \bigcirc \odot$

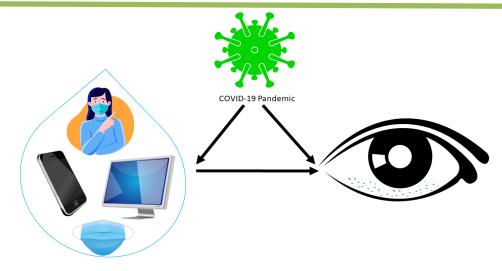


Figure 1. Studies on the worsening or development of dry eye disease (DED) during the coronavirus disease (COVID-19) pandemic should control for confounding factors, such as usage of visual display terminals and mask-wearing duration, before causation is suspected. Future studies addressing these and other plausible confounding factors, such as age, sex, systemic comorbidities, pre-existing ocular disease, and history of ocular and systemic drugs, in patients with DED are warranted on a clinical trial basis to confirm a causal relationship between the COVID-19 pandemic and DED.

ETHICAL DECLARATIONS

Ethical approval: No ethical approval was required. **Conflict of interests:** None.

FUNDING

None.

ACKNOWLEGEMENTS

None.

REFERENCES

- Talens-Estarelles C, García-Marqués JV, Cervino A, García-Lázaro S. Use of digital displays and ocular surface alterations: A review. Ocul Surf. 2021;19:252-265. doi: 10.1016/j.jtos.2020.10.001 pmid: 33053438
- 2. Uchino M, Yokoi N, Uchino Y, Dogru M, Kawashima M, Komuro A, et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: the Osaka study. Am J Ophthalmol. 2013;156(4):759-66. doi: 10.1016/j.ajo.2013.05.040 pmid: 23891330
- Inomata T, Iwagami M, Nakamura M, Shiang T, Yoshimura Y, Fujimoto K, et al. Characteristics and Risk Factors Associated With Diagnosed and Undiagnosed Symptomatic Dry Eye Using a Smartphone Application. JAMA Ophthalmol. 2020;138(1):58-68. doi: 10.1001/ jamaophthalmol.2019.4815 pmid: 31774457
- Pei X, Jiao X, Lu D, Qi D, Huang S, Li Z. How to Face COVID-19 in Ophthalmology Practice. Med Hypothesis Discov Innov Ophthalmol. 2020; 9(3):164-171. doi: 10.51329/mehdiophthal1406
- Neti N, Prabhasawat P, Chirapapaisan C, Ngowyutagon P. Provocation of dry eye disease symptoms during COVID-19 lockdown. Sci Rep. 2021;11(1):24434. doi: 10.1038/s41598-021-03887-4 pmid: 34952901
- Napoli PE, Nioi M, Fossarello M. The "Quarantine Dry Eye": The Lockdown for Coronavirus Disease 2019 and Its Implications for Ocular Surface Health. Risk Manag Healthc Policy. 2021;14:1629-1636. doi: 10.2147/RMHP.S277067 pmid: 33907480
- Li L, Zhang J, Chen M, Li X, Chu Q, Jiang R, et al. Contribution of Total Screen/Online-Course Time to Asthenopia in Children During COVID-19 Pandemic via Influencing Psychological Stress. Front Public Health. 2021;9:736617. doi: 10.3389/fpubh.2021.736617 pmid: 34926368
- Giannaccare G, Vaccaro S, Mancini A, Scorcia V. Dry eye in the COVID-19 era: how the measures for controlling pandemic might harm ocular surface. Graefes Arch Clin Exp Ophthalmol. 2020;258(11):2567-2568. doi: 10.1007/s00417-020-04808-3 pmid: 32561978
- Ganne P, Najeeb S, Chaitanya G, Sharma A, Krishnappa NC. Digital Eye Strain Epidemic amid COVID-19 Pandemic A Cross-sectional Survey. Ophthalmic Epidemiol. 2021;28(4):285-292. doi: 10.1080/09286586.2020.1862243 pmid: 33369521
- Saldanha IJ, Petris R, Makara M, Channa P, Akpek EK. Impact of the COVID-19 pandemic on eye strain and dry eye symptoms. Ocul Surf. 2021;22:38-46. doi: 10.1016/j.jtos.2021.06.004 pmid: 34133976
- 11. Hayirci E, Yagci A, Palamar M, Basoglu OK, Veral A. The effect of continuous positive airway pressure treatment for obstructive sleep apnea syndrome on the ocular surface. Cornea. 2012;31(6):604-8. doi: 10.1097/ICO.0b013e31824a2040 pmid: 22410644
- 12. Jahanbani-Ardakani H, Hosseini M, Almasi S, Khalili MR. Letter to the Editor: Face Mask-associated Dry Eye in Health Care Professionals amid the COVID-19 Pandemic. Optom Vis Sci. 2021;98(8):995-996. doi: 10.1097/OPX.000000000001758 pmid: 34387585
- 13. Krolo I, Blazeka M, Merdzo I, Vrtar I, Sabol I, Petric-Vickovic I. Mask-Associated Dry Eye During COVID-19 Pandemic-How Face Masks Contribute to Dry Eye Disease Symptoms. Med Arch. 2021;75(2):144-148. doi: 10.5455/medarh.2021.75.144-148 pmid: 34219875
- Mann CJ. Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emerg Med J. 2003;20(1):54-60. doi: 10.1136/emj.20.1.54 pmid: 12533370
- Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench. 2012;5(2):79-83 pmid: 24834204