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ABSTRACT
Background: Artificial intelligence (AI) has great potential for interpreting and analyzing images and 
processing large amounts of data. There is a growing interest in investigating the applications of AI in anterior 
segment ocular diseases. This narrative review aims to assess the use of different AI-based algorithms for 
diagnosing and managing anterior segment entities.
Methods: We reviewed the applications of different AI-based algorithms in the diagnosis and management of 
anterior segment entities, including keratoconus, corneal dystrophy, corneal grafts, corneal transplantation, 
refractive surgery, pterygium, infectious keratitis, cataracts, and disorders of the corneal nerves, conjunctiva, 
tear film, anterior chamber angle, and iris. The English-language databases PubMed/MEDLINE, Scopus, and 
Google Scholar were searched using the following keywords: artificial intelligence, deep learning, machine 
learning, neural network, anterior eye segment diseases, corneal disease, keratoconus, dry eye, refractive 
surgery, pterygium, infectious keratitis, anterior chamber, and cataract. Relevant articles were compared 
based on the use of AI models in the diagnosis and treatment of anterior segment diseases. Furthermore, 
we prepared a summary of the diagnostic performance of the AI-based methods for anterior segment ocular 
entities. 
Results: Various AI methods based on deep and machine learning can analyze data obtained from corneal 
imaging modalities with acceptable diagnostic performance. Currently, complicated and time-consuming 
manual methods are available for diagnosing and treating eye diseases. However, AI methods could save 
time and prevent vision impairment in eyes with anterior segment diseases. Because many anterior segment 
diseases can cause irreversible complications and even vision loss, sufficient confidence in the results obtained 
from the designed model is crucial for decision-making by experts. 
Conclusions: AI-based models could be used as surrogates for analyzing manual data with improved 
diagnostic performance. These methods could be reliable tools for diagnosing and managing anterior segment 
ocular diseases in the near future in remote areas. It is expected that future studies can design algorithms that 
use less data in a multitasking manner for the detection and management of anterior segment diseases.
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INTRODUCTION
Artificial intelligence (AI) is a new topic in computer science that imitates human cognition and behavior [1]. 
Machine learning (ML) and deep learning (DL) are important branches in this growing scientific field. Recently, 
AI has shown great potential for use in medical research owing to its ability to process data [2]. In ophthalmology, 
researchers have investigated the use of AI in posterior segment diseases, particularly retinal diseases [3]. 

 Currently, anterior segment diseases with a risk of permanent eye impairment have encouraged researchers 
to use AI models [4, 5]. Timely diagnosis and appropriate treatment are important to prevent vision loss [6]. 
Routine clinical practices may be time-consuming and result in poor decision-making. Therefore, by designing 
tools based on AI methods, diagnosis and management can be performed with greater accuracy, less time, and 
lower cost [6, 7]. Despite various studies on the application of AI in ophthalmology, challenges remain that have 
been overlooked by researchers [8].

To our knowledge, few studies have compared different applications of AI in anterior segment diseases [3, 
9]. This narrative review aims to assess the applications and diagnostic performance of AI in anterior segment 
entities, including keratoconus, corneal dystrophy, corneal grafts, corneal transplantation, refractive surgery, 
pterygium, infectious keratitis, cataracts, and disorders of the corneal nerves, conjunctiva, tear film, anterior 
chamber angle, and iris.

METHODS
The English-language literature published from April 1999 to August 2022 was searched via the PubMed/
MEDLINE, Scopus, and Google Scholar databases using the following keywords for AI and anterior segment 
ocular diseases: “artificial intelligence,” “deep learning,” “machine learning,” “neural network,” “anterior eye 
segment,” “corneal disease,” “keratoconus,” “dry eye,” “refractive surgery,” “pterygium,” “infectious keratitis,” 
“anterior chamber,” and “cataract.” The extracted articles were first reviewed by title and abstract, then the full 
texts of relevant articles were examined for parameters related to the detection and management of anterior 
segment disease.

RESULTS
We compared the relevant articles based on the application of AI-based models in the diagnosis and treatment 
of anterior segment ocular diseases. Furthermore, we prepared a summary of the diagnostic performance of AI-
based methods for these purposes (Table 1). AI-based models based on DL and ML can analyze data obtained 
from corneal imaging modalities with an acceptable diagnostic performance (Table 1). Currently, complicated 
and time-consuming manual methods are available for diagnosing and treating eye diseases. AI methods could 
save time and prevent vision impairment in eyes with anterior segment diseases. In the Discussion section below, 
the retrieved studies concerning AI-based models for diagnosing and treating anterior segment ocular diseases 
are outlined.

DISCUSSION
Keratoconus
Keratoconus (KCN) is a bilateral, non-inflammatory, asymmetric ectatic corneal disorder that can cause corneal 
irregularity, increased aberrations, and even vision loss [3]. As KCN is a progressive disease, timely diagnosis 
could save vision [3, 55]. Imaging modalities used for the diagnosis of KCN include placido disc-based corneal 
topography, three-dimensional corneal tomography, anterior segment optical coherence tomography (AS-
OCT), and biomechanical assessment [56].

The diagnostic accuracy of corneal imaging methods based on AI models has been evaluated in some studies. 
Feedforward neural networks, convolutional neural networks (CNN), support vector machine (SVM) learning, 
multilayer perceptron (MLP), and decision tree classification (DT) are effective in differentiating keratoconic 
eyes from normal eyes [3]. Kamiya et al. [10] found that CNN using six color-coded maps obtained from AS-
OCT could distinguish a healthy cornea from that of KCN with an accuracy of 99.1% and could also evaluate 
KCN severity. In another study, Lavrik and Valentin [11] detected KCN with a high accuracy (99.3%) using 
a CNN (KeratoDetect, Keratoconus Detection Algorithm). In addition, AI can predict the results of KCN 
treatment. Valdes-Mas et al. [13] predicted postoperative visual quality based on corneal shape changes using an 
artificial neural network (ANN).
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Table 1. Summary of studies on the diagnostic performance of artificial intelligence-based models in anterior segment ocular entities

Author (Year of Publication) Instruments Number of Eyes and/or 
Images

AI algorithms Diagnostic performance (%)

Keratoconus
Kamiya et al. (2019) [10] AS-OCT 239 normal eyes 

304 eyes with KCN (108 eyes 
grade I, 75 eyes grade II, 42 
eyes grade III, and 79 eyes 
grade IV) 

CNN Accuracy: 99.1 
Sensitivity: 98.4
Specificity: 100

Lavric et al. (2019) [11] Pentacam 1,500 normal eye 
1,500 eyes with KCN

KeratoDetect CNN Accuracy: 99.3

Yousefi et al. (2018) [12] AS-OCT 3,156 eyes with valid Ectasia 
Status Index

Unsupervised ML Sensitivity: 97.7 
Specificity: 94.1

Valdes-Mas et al. (2014) [13] - 288 eyes with KCN ANN
MLP

Mean Absolute Error: 95

Issarti et al. (2019) [14] Pentacam 312 normal eyes, 
77, 220, and 229 eyes with 
KCN suspect, mild KCN, and 
moderate KCN, respectively 

Feedforward NN Accuracy: 96.6 
Sensitivity: 95.6
Specificity: 97.8

Ruiz Hidalgo et al. (2017) 
[15]

Pentacam 131 eyes SVM and binary
classification

Accuracy: 98.9 
Specificity: 99.1

Xu et al. (2022) [16] Pentacam 430 normal eyes, 
231 unaffected eyes from 
asymmetric KCN, and
447 eyes with KCN

KerNet and index 
derived AI models 
(XGBoost, LGBM, 
LR and RF)

KerNet on validation set
-Accuracy: 94.12 
-AUC: 99
Index derived AI models: 
-Accuracy: 84.02 – 86.98
-AUC: 94.4 – 96.8

Herber et al. (2021) [17] Pentacam 116 normal eyes 
318 eyes with KCN

 LDA and RF
algorithms

The overall accuracy for: 
- LDA: 71.0
- RF: 78.0

Hazarbassanov et al. (2022) 
[18]

AS-OCT and 
Pentacam

6,961 eyes Unsupervised ML  
(FPA-K-means)

Accuracy: 96.03
Precision: 96.29

Firat et al. (2022) [19] Pentacam 341 normal 
341 eyes with KCN

AlexNet (SVM) Accuracy: 98.53 
Sensitivity: 98.06
Specificity: 99.01

Corneal Transplantation
Treder et al. (2019) [20] AS-OCT Eyes post-DMEK surgery

1,172 AS-OCT images (609: 
attached graft; 563: detached 
graft) for training and testing

DT Accuracy: 96
Sensitivity: 98
Specificity: 94

Hayashi et al. (2020) [21] AS-OCT 31 eyes with rebubbling
31 eyes with no rebubbling
469 images

DNN AUC: 96
Sensitivity: 96.7
Specificity: 91.5

Abou Shousha et al. (2020) 
[22]

OCT 3,900 normal eyes
3,900 eyes with graft rejection
12,000 OCT images

DCNN AUC: 99 
Accuracy: 100 

Mangana et al. (2022) [23] - 220 images of post-
keratoplasty anterior pole 
eyes

AutoML Accuracy: 99.5
Sensitivity: 95.8
Specificity: 95.5

Elsawy et al. (2021) [24] AS-OCT 879 eyes
158,220 AS-OCT images 
(45,900; 16,740; 64,800; 
and 30,780 images of healthy 
eyes, eyes with FECD, 
KCN, and eyes with DES, 
respectively)

 MDDN AUC: 99
F1 scores: 90

Refractive Surgery
Lopes et al. (2018) [25] Pentacam 2,980; 71; and 182 eyes with 

stable LASIK, PLE, and 
KCN, respectively

RF, CNN, Bayers 
network, SVM

AUC: 97
Accuracy: 94.2
Sensitivity: 96.6 
Specificity: 98.8

Yoo et al. (2019) [26] Pentacam 153 eyes (1, 108, and 42 eyes 
with PLE, KCN, FFKCN, 
respectively)
10,561 images 

Ensemble classifier
based on ML (SVM, 
ANN, RF, LASSO 
[a feature of NN], 
AdaBoost)

AUC: 98.1
Internal Accuracy: 94.1
External Accuracy: 93.4
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Saad et al. (2016) [27] OPD-Scan 114 post-LASIK stable eyes 
62 eyes with FFKCN

DF AUC: 97
Sensitivity: 63 (for FFKCN)
Sensitivity: 100 (for KCN)
Specificity: 82

Yoo et al. (2020) [28] Slit lamp, 
Pentacam

18,480 healthy eyes A multiclass XGBoost 
model

Accuracy: 81

Khamar et al. (2020) [29] OCT 76 eyes (22, 22, 15, and 1 
eyes after LASIK, SMILE, 
PRK, and transepithelial 
PRK refractive surgeries, 
respectively)

DT AUC: 79
Sensitivity: 86.4
Specificity: 71.9

Pterygium
Zulkifley et al. (2019) [30] Slit lamp 60 normal eyes

60 eyes with pterygium
CNN Accuracy: 81.1 

Sensitivity: 95
Specificity: 98.3

Wan Zaki et al. (2018) [31] Slit lamp 2,692 normal eyes
325 eyes with pterygium

SVM Accuracy: 91.2
Sensitivity: 88.7 
Specificity: 88.3
AUC: 95.6

Hung et al. (2022) [32] Slit lamp 61 normal eyes 
176 eyes with pterygium

DL, MLP Accuracy: 91.7
Sensitivity: 91.7 
Specificity: 91.7
F1 score: 84.6

Xu et al. (2021) [33] Slit lamp 190 normal eyes 
162 eyes with pterygium 
1,220 images

PyCharm – 
EfficientNet-B6

Accuracy: 94.68
AUC: 93.7
Sensitivity: 90.06
Specificity: 97.32

Jais et al. (2021) [34] - 93 eyes with pterygium RapidMiner – SVM Accuracy: 94.44
Specificity: 100
Sensitivity: 92.14

Infectious Keratitis
Saini et al. (2003) [35] - 106 eyes with corneal ulcer 

(either bacterial or fungal 
keratitis)

ANN Accuracy: 90.7
Specificity (bacterial): 100
Specificity (fungal): 76.4

Wu et al. (2018) [36] Confocal
microscopy

378 images DT, KNN, LR, SVM AUC: 86 – 98
Accuracy: 81.7 – 99.1 
Sensitivity: 78.5 – 98.5 
Specificity: 87.4 – 98.9

Liu et al. (2020) [37] Confocal
microscopy 
(fungal 
keratitis)

1,213 images (994 abnormal 
images and 219 normal 
images)

CNN Accuracy: 100
Sensitivity: 99.9
Specificity: 100

Kuo et al. (2020) [38] Fundus 
photography 
and slit lamp 
microscopy

288 images (fungal keratitis) DenseNet algorithm 
(a representative 
CNN based on DL)

Accuracy: 70
Sensitivity: 71
Specificity: 68

Essalat et al. (2022) [39] Confocal 
microscopy 

4,001 eyes: 897; 1,391; 1,004; 
and 743 eyes with fungal 
keratitis, acanthamoeba 
keratitis, NSK, and normal 
eyes, respectively

CNN (DenseNet161) Accuracy: 93.55
Precision: 92.52
Recall: 94.77
F1 score: 96.93

Ghosh et al. (2022) [40] Slit lamp 66 eyes with fungal keratitis
128 eyes with bacterial 
keratitis (779 and 1,388 
images from eyes with 
fungal and bacterial keratitis, 
respectively).

CNN (VGG19, 
ResNet50, and 
DenseNet121)

Precision and sensitivity 
respectively:
- VGG19: 88. 70
- DenseNet121: 61. 85 
- RestNet50: 57. 85 

Natarajan et al. (2022) [41] Slit lamp 177 images from eyes with 
herpes simplex viral stromal 
necrotizing keratitis and 
130 images from eyes with 
culture-proven non-viral 
keratitis (43 bacterial and 87 
fungal keratitis).

CNN (DenseNet and 
ResNet)

AUC: 73
Accuracy: 72
Sensitivity: 69.6 
Specificity: 76.5 

Continued Table 1. Summary of studies on the diagnostic performance of artificial intelligence-based models in anterior segment ocular entities
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Anterior Chamber Angle and Iris
Xu et al. (2019) [42] AS-OCT 4,036 AS-OCT images, 

with corresponding 1,943 
and 2,093 open and close 
angle gonioscopy grade, 
respectively

Modified ResNet-18 AUC: 93.3
Accuracy: 89.1 – 98.4

Fu et al. (2019) [43] AS-OCT 2,113 OCT images (7,375 
open-angle and 895 angle-
closure glaucoma) 

VGG-16 (CNN) AUC: 96 
Sensitivity: 90
Specificity: 92

Fu et al. (2020) [44] AS-OCT 
HD-OCT

4,135 images by AS-OCT 
and 701 images by HD-OCT 
(7,475 open-angle and 895 
angle-closure glaucoma)

MLDN Accuracy: 91.2 – 91.8 
Sensitivity: 87.4 – 93.0 
Specificity: 90.8 – 95.1

Shi et al. (2019) [45] UBM 540 eyes with open-angle and 
angle-closure
540 UBM images

Inception v3 CNN AUC: 99
Accuracy: 97.2
Sensitivity: 96.3 – 98.2 
Specificity: 98.1 – 99.1

Dimililer et al. (2016) [46] - 50 normal eyes 
50 eyes with iris tumor
100 images of two databases 
(MilesResearch and 
EyeCancer)

BPNN Accuracy: 95.7

Liu et al. (2022) [47] AS-OCT 116 normal eyes 
171 eyes with primary angle-
closure glaucoma
5,166 images

 DLLSS and MPSS -

Shon et al. (2022) [48] Visual field 
test 

9,212 eyes with primary 
open-angle glaucoma

CNN AUC: 86.4
Sensitivity: 42
Specificity: 95

Cataract
Xu et al. (2020) [49]  Fundus

camera
8,030 fundus images: 2,212; 
1,871; 2,272; and 1,675 
fundus images of eyes with 
no cataract, eyes with mild, 
moderate, and severe cataract, 
respectively

AlexNet + VisualDN 
(CNN)

Accuracy: 86.2 
Sensitivity: 79.8 – 95.0 
Specificity: 83.3 – 88.4

Zhang et al. (2019) [50] Fundus 
camera

1,352 images (487, 317, 124, 
154, 135, and 135 images of 
eyes with no cataract, eyes 
with slightly mild, mild, 
medium, slightly severe, and 
severe cataracts, respectively)

SVM + FCNN Accuracy: 92.66
Sensitivity: 99.4

Jiang et al. (2018) [51] Slit lamp 6,090 slit lamp images of 
pseudophakic eyes 

TempSeq-Net (CNN) AUC: 97
Accuracy: 92.2
Sensitivity: 81.0 
Specificity: 91.4

Ahn et al. (2022) [52] AS-OCT, 
Optical 
biometry 

2,332 anterior segment 
images

v4 CNN and ResNet 
(DNN)

-

Shimizu et al. (2021) [53] Slit lamp 18,596 images ML Accuracy: 87.8
Sensitivity: 99.6
Specificity: 96

Junayed et al. (2021) [54] Fundus 
camera

2,067 normal images
2,679 cataract images

CataractNet (CNN) Accuracy: 99.13
Specificity: 99.17
F1 score: 99.07

Abbreviations: AS-OCT, anterior segment optical coherence tomography; KCN, keratoconus; CNN, convolutional neural net-
work; ML, machine learning; ANN, artificial neural networks; MLP, multilayer perception; NN, neural networks; SVM, support 
vector machines; AI, artificial intelligence; LGBM, a machine learning model called light gradient boosting machine; LR, linear 
regression; RF, random forests; AUC, area under the curve; LDA, Linear discriminant analysis; FPA-K-means, a forward propaga-
tion acceleration; DMEK, descemet membrane endothelial keratoplasty; DT, decision tree; DNN, deep neural networks; DCNN, 
deep convolutional neural networks; AutoML, automated deep learning; FECD, fuchs endothelial dystrophy; DES, dry eye syn-
drome; MDDN, multi-disease deep learning diagnostic network; F1 score, the F1 score is a combination of precision and recall; 
LASIK, laser-assisted in situ keratomileusis; PLE, post-LASIK ectasia; FFKCN, forme fruste keratoconus; LASSO, least absolute 
shrinkage and selection operator; OPD-scan, Placido-aberrometer systems (Nidek, Gamagori, Japan); DF, Discriminant function; 
SMILE, small incision lenticule extraction; PRK, photorefractive keratectomy; DL, deep learning; KNN, k-nearest neighbor; NSK, 
non-specific keratitis; HD-OCT, high-definition optical coherence tomography; MLDN, Multipath lightweight deep network; 
UBM, ultrasound biomicroscopy; BPNN, back propagation algorithm in neural network; DLLSS, deep learning supersampling; 
MPSS, manually plotted SS; FCNN, fourier convolution neural network.

Continued Table 1. Summary of studies on the diagnostic performance of artificial intelligence-based models in anterior segment ocular entities
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Corneal Dystrophy
Corneal dystrophy is a genetic, non-inflammatory, and bilateral disease [57]. The differences between an 
edematous cornea and a normal cornea can be identified using OCT images based on DL algorithms [58]. In 
addition, using high-resolution OCT images, early-stage Fuchs’ corneal endothelial dystrophy (FECD) without 
corneal edema can be distinguished from late-stage FECD with corneal edema. The sensitivity and specificity in 
the differentiation of the normal cornea from that of FECD (early or late) using this method have been reported 
as 99% and 98%, respectively [59].

Corneal Nerves
Corneal nerves are altered in some corneal diseases, and AI-based algorithms may be useful for identifying 
related diseases. In vivo confocal microscopy (IVCM) provides more information about the basal nerves and is 
superior to manual examinations [1]. The CNN approach with IVCM images and neural segmentation obtained 
a correlation score of 0.80 between readers and CNN [60]. In one study, nerve properties, including fiber 
length and tail points, were measured using DL models to diagnose diabetic neuropathy and its severity [61]. 
The authors compared DL performance with that of a reliable automated analysis program called ACCMetrics 
(Early Neuropathy Assessment [ENA] group, University of Manchester, Manchester, UK) and found that the 
DL algorithm had superior performance. The corneal nerve segmentation network (CNS-Net) is another DL-
based model that evaluates the automatic segmentation of the sub-basal corneal nerve fiber using IVCM images 
with an area under the curve (AUC) of 96% [62].

Corneal Grafts
Endothelial cell characteristics can be assessed using AI-based algorithms and specular microscopic images. 
U-Net is a DL-based model designed by Daniel et al. [63] based on the automatic segmentation of binocular 
microscopic images for different corneal diseases. They found a good correlation between the research results 
and the manual interpretation of images. Treder et al. [20] detected graft detachment after Descemet membrane 
endothelial keratoplasty (DMEK) using AS-OCT images based on the DL method with sensitivity, specificity, 
and accuracy of 98%, 94%, and 96%, respectively. Evaluation of endothelial cell density (ECD) and hexagonality 
(HEX) using CNN with Topcon SP-1P (Topcon Co., Tokyo, Japan) binocular microscopic images in the eyes of 
patients who underwent ultrathin Descemet stripping automated endothelial keratoplasty showed an accuracy 
of 98.4% [64]. However, the success rates of ECD and HEX determination using Topcon IMAGEnet i-base 
software have been reported as 71.5% and 30.5%, respectively [64]. 

Corneal Transplantation 
Graft detachment is a complication of endothelial keratoplasty and may require intervention [65]. AI can help 
in choosing proper cases at the right time; Treder et al. [20] evaluated 1,172 AS-OCT images based on the 
DL method in the diagnosis of graft detachment after DMEK surgery (accuracy: 96%, sensitivity: 98%, and 
specificity: 94%). Hayashi et al. [21] designed nine models of deep neural network structures using AS-OCT 
images and evaluated them to assess rebubbling after DMEK. They reported the highest AUC for the VGG19 
model [21]. Therefore, with AI methods, better decisions can be made regarding the treatment and follow-up of 
these patients.

Refractive Surgery
Although various refractive surgical approaches are effective in improving patients’ visual acuity and quality of 
life, the risk of iatrogenic ectasia has been a concern for both patients and physicians [1]. AI technology may 
be able to prevent complications and reduce the risk of corneal ectasia. In recent years, platforms have been 
designed based on AI methods to monitor those at risk of post-laser in situ keratomileusis (LASIK) ectasia 
(PLE) [56]. Ambrosio et al. [66] evaluated the performance of several AI-based models using Pentacam HR 
tomography data (Oculus, Wetzlar, Germany). They found that the Pentacam random forest index had an AUC 
of 99.2%, a sensitivity of 94.2%, and a specificity of 98.8%, and had diagnostic power superior to that of Belin/
Ambrosio deviance (AUC: 96%, sensitivity: 87.3%, and specificity: 97.5%). 

In addition, AI-based models can predict the appropriateness of corneal refractive surgery. Yoo et al. [26] 
examined 10,561 eyes that underwent laser epithelial keratomileusis, LASIK, and small-incision lenticule 
extraction surgery. They found that the XGBoost model derived from the meta-algorithm could predict the 
suitability of corneal refractive surgery with internal and external accuracy of 94.1% and 93.4%, respectively. 
In addition, Saad and Gatinel [27] designed a linear diagnostic model using Orbscan II data, which had a high 
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sensitivity and specificity for the diagnosis of PLE. The SCORE Analyzer and the Pentacam InceptionResNetV2 
Screening System (PIRSS) models were also generated based on DL models and had accuracies of 95% and 91%, 
respectively [67, 68]. 

Conjunctiva and Tear Film
The most important application of AI for the conjunctiva and tear film is the diagnosis of dry eye disease (DED). 
The fluorescein breakdown time test, tear film interferometry, tear film protein analysis, and meibography are 
common clinical examinations for DED evaluation [9]. 

Algorithms based on SVM and MLP can evaluate interference patterns in the lipid layer of tears using the 
interferometry technique [69-71]. In addition, Koh et al. [72] used a method combining SVM and scale-invariant 
feature transform with meibography; the length and width of meibomian glands were measured with sensitivity 
and specificity of 97.9% and 96.1%, respectively. Recently, the multi-disease deep learning diagnostic network 
(MDDN) method was developed for the automatic diagnosis of several eye diseases, including KCN, DED, and 
FECD, using 158,220 AS-OCT images [24]. In that study, the MDDN model showed a high level of validity 
(AUC > 99%) [24]. DED detection is possible by analyzing tear film protein patterns using ANN with an AUC of 
93%, a sensitivity of 90%, and a specificity of 90%. In addition, AI-based methods have shown promising results in 
the automatic grading of conjunctival hyperemia using the conjunctival segmentation algorithm [73-75]. 

Pterygium
Pterygium is an ocular surface disease that causes excessive growth of the conjunctiva toward the cornea [3]. 
Various AI-based methods have been reported for the differentiation of healthy eyes from those with pterygia. 
Zulkifley et al. [30] used Pterygium-Net for the detection and localization of pterygia. Pterygium-Net is a DL 
model that utilizes three layers of CNN with three layers of fully connected networks with a high diagnostic 
ability (accuracy: 81.1%, sensitivity: 95%, and specificity: 98.3%) and a low failure rate of 0.053 for pterygium 
localization. In addition, Wan Zaki et al. [31] used SVM and ANN to distinguish healthy eyes from those with 
pterygia based on images taken from the anterior surface of the eye. Both algorithms had an average accuracy of 
91.2%; however, SVM, with a sensitivity of 88.7% and a specificity of 88.3%, and AUC of 95.6%, may be more 
effective for detection of pterygia.

Infectious Keratitis
Infectious keratitis (IK) is an important cause of blindness, with a prevalence of 1.5–2 million people worldwide 
[76]. Timely diagnosis and proper follow-up can reduce serious eye problems and the need for corneal 
transplantation [56]. The current reference standard methods for the diagnosis of IK are corneal scraping, 
microscopy, staining, and culture [3]. Confocal microscopy is a noninvasive and non-contact imaging method 
used to detect fungal IK [36]. Recently, AI-based models involving image processing methods have been 
developed to identify IK. Saini et al. [35] evaluated the success rate of ANN in classifying IK in corneal ulcer 
classifications. They reported that the ANN algorithm has a higher accuracy than that of physicians’ predictions 
(accuracy: 90.7% versus 62.8%). The robust binary pattern, or ARBP, is another new model that can distinguish 
fungal hyphae by processing confocal microscopic images of IK-affected corneas and healthy corneas (accuracy: 
99.74%) [36]. Kuo et al. [38] designed a DL software called DenseNet algorithm to distinguish fungal from non-
fungal keratitis, with 71% sensitivity and 68% specificity. These models may be useful for tele-diagnosis of IK in 
remote areas where a corneal specialist is unavailable. 

Anterior Chamber Angle and Iris
Glaucoma may not be detected in its early stages, and early detection is vital for preventing vision loss [4]. 
Gonioscopy is the reference standard for the evaluation of angle-closure glaucoma; however, it has limitations, 
such as subjective interpretation and poor reproducibility [77]. AS-OCT, high-frequency ultrasound 
biomicroscopy (UBM), and Scheimpflug imaging, as with the Pentacam, serve as effective tools for challenging 
gonioscopic circumstances [77]. 

DL-based methods have been designed for the automatic detection of primary angle-closure glaucoma 
(PACG) using images obtained from AS-OCT. The OCT image processing method categorizes images based on 
related features. Xu et al. [42] designed three CNN classifiers with an analysis of 3,396 AS-OCT images for the 
diagnosis of PACG. Their results showed that the ResNet-18 classifier had the best performance (AUC: 92.8%) 
[42]. VGG-16 multilevel and multi-context deep network algorithms were developed in the process of analyzing 
8,270 images and had good diagnostic accuracy (Table 1) [43, 44]. 
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UBM also produces high-quality images of the anterior chamber angle [3]. Shi et al. [45] designed the 
Inception v3 software, which is a type of CNN algorithm for the classification of the anterior chamber angle 
using UBM images. They classified the images into one of three categories: open-angle, narrow-angle, and angle-
closure. The sensitivity and specificity of this algorithm were 98.04% and 99.09% for open-angle, 96.30% and 
98.13% for narrow-angle, and 98.21% and 99.05% for angle-closure, respectively [45]. It appears that CNN has 
an acceptable success rate in classifying glaucoma images.

Studies have shown that AI-based methods can be useful for diagnosing iris diseases [3]. Dimililer et al. 
[46] designed an intelligent eye tumor detection system (IETDS) based on the two conventional 3-layer back 
propagation neural networks (BPNN) with 4,096 input neurons. The IETDS could accurately detect different 
types of iris tumors using the BPNN1 and BPNN2 back-propagation neural networks (accuracy: 95.7%). 
BPNN1 uses resized original images to detect eyes with or without tumors, and BPNN2 uses the preprocessed 
image in IETDS to increase the detection ratio [46]. 

Cataracts
Cataracts are one of the main causes of blindness worldwide [9]. They are usually diagnosed using a slit lamp 
examination, and the lens opacities classification system III and the Wisconsin cataract grading system are the 
two main cataract grading systems [78, 79]. 

AI-based models can aid in automatic cataract recognition and grading using images obtained by slit-lamp 
microscopy and fundus photography. Using fundus images, Zhang et al. [50] developed a new cataract grading 
method using residual networks (ResNet18), gray-level co-occurrence matrix (GLCM), SVM classifiers, and 
fully connected neural network (FCNN) DL-based models. This method achieved an average accuracy of 
92.66%, which was at least 1.75% higher than that of existing methods [50]. The AlexNet and VisualDN models 
were designed based on CNN by processing 8,030 fundus images for cataract diagnosis and grading (AUC: 
86.2%) [49]. In addition, Jiang et al. [51] demonstrated a model based on deep CNN using slit lamp images to 
predict the progress of posterior capsule opacification with an accuracy of 92.2% (Table 1).

Limitations of Artificial Intelligence
Despite the several advantages of using AI in ophthalmology, some limitations have been reported that create a 
serious challenge. These include higher accuracy in the training set than in the test set, which is called “overfitting” 
[1, 80]; unfavorable results due to the use of irrelevant or inappropriate inputs, called “rubbish in and rubbish 
out” [1]; and the lack of transparency of decision-making and data analysis methods by the model, which is 
identified as a “black box” [1, 80].

The use of data collected from different groups is an important challenge in the future of AI. Data collection 
for training different AI-based models has been performed for particular populations, races, and ethnicities [8]. 
Therefore, this could create a significant challenge during the testing phase. Furthermore, choosing a model 
with high diagnostic power may be challenging when faced with a heterogeneous population. Therefore, it is 
necessary to validate a large dataset from a heterogeneous population that reflects real-world settings while 
observing medicolegal issues and ensuring data security [1,4]. Although there is a large amount of worldwide 
data available to design various AI-based models, data validity is an important issue [8, 80]. Data should be 
verified by a specialist for quality and specific details related to the ocular structure, and manual data sorting 
is time-consuming. In addition, standardization and classification of data for the anterior segment are more 
difficult than those for the posterior segment because of the transparent nature of the cornea and the differences 
in image magnification and contrast. This issue becomes more challenging when models with large datasets are 
required [1].

Because many anterior segment diseases can cause irreversible complications and even vision loss, sufficient 
confidence in the results obtained from the designed model is crucial for decision-making by experts. Automation 
bias occurs when an expert relies on the output of a model for diagnosing a disease and does not look for other 
clinical evidence [81]. To fully trust the results of a model and avoid automation bias [82], models should be 
periodically retrained with new and different data to reduce the possibility of errors. This issue is more important 
in anterior segment diseases and may become a significant challenge in the future.

Although this review provides information for eye care practitioners by summarizing studies of AI applications 
in anterior segment ocular diseases, it has some limitations. One drawback is the lack of a systematic search 
and meta-analysis on validity results concerning the diagnostic performance of each AI-based method for each 
anterior segment disease. A systematic review and meta-analysis of articles reporting the validity of a particular 
AI-based model may provide more robust and conclusive results. The lack of a grey literature review is another 
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limitation. The use of AI is growing rapidly, and there could be unpublished data with useful information that 
was not presented here. Review articles addressing these limitations could pave the way for future AI applications 
in treating and managing anterior segment ocular diseases and could provide robust results to confront existing 
challenges in this regard.

CONCLUSIONS
Diagnosis of corneal diseases and monitoring responses to management remain major challenges in 
ophthalmology. However, corneal imaging modalities and data processing algorithms can be useful. AI-based 
models can be used even in areas that do not have access to ophthalmologists with a  teleophthalmology approach. 
The diagnosis of many anterior segment diseases requires accurate examination; however, multitasking models 
can be used simultaneously with clinical examination. In the future, new technologies based on AI will make 
the diagnosis and treatment of anterior segment diseases easier and safer using combined models with different 
datasets.
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