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ABSTRACT
Background: By leveraging the imaging-rich nature of ophthalmology and optometry, artificial intelligence (AI) is rapidly
transforming the vision sciences and addressing the global burden of ocular diseases. The ability of AI to analyze complex
imaging and clinical data allows unprecedented improvements in diagnosis, management, and patient outcomes. In this
narrative review, we explore the current and emerging opportunities of utilizing Al in the vision sciences, critically
examine the associated challenges, and discuss the ethical implications of integrating Al into clinical practice.
Methods: We searched PubMed/MEDLINE and Google Scholar for English-language articles published from January 1,
2005, to March 31, 2025. Studies on Al applications in ophthalmology and optometry, focusing on diagnostic performance,
clinical integration, and ethical considerations, were included, irrespective of study design (clinical trials, observational
studies, validation studies, systematic reviews, and meta-analyses). Articles not related to the use of Al in vision care were
excluded.
Results: Al has achieved high diagnostic accuracy across different ocular domains. In terms of the cornea and anterior
segment, Al models have detected keratoconus with sensitivity and accuracy exceeding 98% and 99.6%, respectively,
including in subclinical cases, by analyzing Scheimpflug tomography and corneal biomechanics. For cataract surgery,
machine learning-based intraocular lens power calculation formulas, such as the Kane and ZEISS Al formulas, reduce
refractive errors, achieving mean absolute errors below 0.30 diopters and performing particularly well in highly myopic
eyes. Al-based retinal screening systems, such as the EyeArt and IDx-DR, can autonomously detect diabetic retinopathy
with sensitivities above 95%, while deep learning models can predict age-related macular degeneration progression with
an area under the receiver operating characteristic curve exceeding 0.90. In glaucoma detection, fundus and optical
coherence tomography-based AI models have reached pooled sensitivity and specificity exceeding 90%, although
performance varies with disease stage and population diversity. Al has also advanced strabismus detection, amblyopia
risk prediction, and myopia progression forecasting by using facial analysis and biometric data. Currently, key challenges
in implementing Al in ophthalmology include dataset bias, limited external validation, regulatory hurdles, and ethical
issues, such as transparency and equitable access.
Conclusions: Al is rapidly transforming vision sciences by improving diagnostic accuracy, streamlining clinical workflow,
and broadening access to quality eye care, particularly in underserved regions. Its integration into ophthalmology and
optometry thus holds significant promise for enhancing patient outcomes and optimizing healthcare delivery. However,
to harness the transformative potential of Al fully, sustained multidisciplinary collaboration, involving clinicians, data
scientists, ethicists, and policymakers, is essential. Rigorous validation processes, transparency in algorithm development,
and strong ethical oversight are equally important to mitigate risks such as bias, data misuse, and unequal access.
Responsible implementation of Al in the vision sciences is essential to ensure that all populations are served equitably.
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INTRODUCTION

In recent years, artificial intelligence (AI) has emerged as a transformative force in healthcare, demonstrating
unprecedented capabilities in terms of data analysis, pattern recognition, and predictive modeling [1-3]. By leveraging
machine learning and deep learning algorithms, Al systems can process vast datasets, identify subtle patterns that are
imperceptible to humans, and generate actionable insights that can enhance clinical decision-making [2-4]. This paradigm
shift is particularly impactful in the vision sciences, where the potential of AI for improving diagnostic accuracy,
personalizing treatments, and democratizing access to care aligns with the unique challenges and opportunities of this
field [1, 3, 5].

The vision sciences represent a vital area for Al innovation given the high global prevalence of ocular diseases,
including diabetic retinopathy (DR), glaucoma, and age-related macular degeneration (AMD), which collectively affect
hundreds of millions worldwide [1, 3, 5]. The imaging-rich nature of ophthalmology and optometry, which encompasses
modalities such as optical coherence tomography (OCT), fundus photography, and visual field testing, is ideal for Al-
driven analysis [1-3]. These imaging techniques generate structured, high-dimensional data that can be parsed by Al
models to detect early disease markers, predict progression, and optimize therapeutic interventions [1, 2, 6]. For example,
based on OCT scan analysis, Al algorithms have achieved >90% accuracy in identifying AMD biomarkers, while deep
learning models for DR screening have demonstrated sensitivity and specificity values rivaling those of
ophthalmologists, indicating the potential of this approach for scalable population-level screening [1-3].

The rationale for prioritizing the implementation of Al in the vision sciences extends beyond the above-mentioned
technological compatibility [1-3]. Preventable vision loss remains a pressing public health crisis, in which disparities in
access to eye care exacerbate patient outcomes in low-resource settings [1, 3, 5]. Al-powered tools, such as smartphone-
based retinal cameras and autonomous diagnostic systems, could address these inequities by enabling remote screening
and task-shifting to non-specialists in underserved regions [1-3]. Furthermore, the integration of multimodal data, i.e.,
combining imaging, genetic, and lifestyle factors, by Al could facilitate personalized treatment paradigms, such as
predicting individual responses to anti-vascular endothelial growth factor therapy in cases of AMD or customizing
myopia control strategies [1, 2, 7].

In this narrative review, we explore the role of Alin advancing the vision sciences from three perspectives: diagnostic
innovation, ethical implementation, and equitable deployment. We synthesize evidence from peer-reviewed studies to
evaluate the efficacy of Al in ocular disease detection, its ethical challenges, and its potential to bridge global eye care
disparities. By critically appraising current advancements and future directions in this review, we aim to inform
clinicians, researchers, and policymakers on harnessing the potential of Al while mitigating risks of using Al in vision

care.

METHODS
This narrative review was based on a targeted search of the PubMed/MEDLINE and Google Scholar databases to ensure

inclusion of the most pertinent studies. This targeted literature search utilized the following keywords and medical

non non

subject headings (MeSH terms): "artificial intelligence," "machine learning," "deep learning," "neural networks,"

non "non "non "non non

"computer vision," "ophthalmology," "optometry," "vision sciences," "ocular imaging,

eye diseases," "keratoconus,"

"o "o "o

cataract," "intraocular lens calculation,

nn

"diabetic retinopathy," "age-related macular degeneration," "glaucoma, corneal
topography,” "optical coherence tomography," "fundus photography," "strabismus,” and "myopia progression." The
search was limited to articles published from January 1, 2005, to March 31, 2025, to focus on contemporary Al applications
and emerging technologies in the vision sciences.

The inclusion criteria were studies of any design (clinical trials, observational studies, validation studies, systematic
reviews, and meta-analyses) focusing on Al applications in ophthalmology and optometry. Studies were included if they
discussed methodologies, clinical validation, diagnostic performance metrics, implementation challenges, or ethical
considerations related to the use of Al in the vision sciences. Only English-language articles were considered. Exclusion
criteria included non-English studies, articles not addressing Al applications in vision care, and conference abstracts
without full-text publications.

The selected articles were evaluated based on their methodological rigor, sample size, population diversity,
validation strategies, and clinical relevance. Priority was given to studies exploring Al applications across a range of
ocular structures and conditions, including the cornea and anterior segment, lens, retina, optic nerve and glaucoma,
extraocular muscles and binocular vision, refractive errors and axial length, as well as neuro-ophthalmology. These

applications were considered in various clinical contexts, such as screening, diagnosis, prognosis, and treatment
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planning. While, particularly focused on papers addressing algorithmic bias, barriers to clinical integration, and strategies

for ensuring equitable implementation of Al technologies across diverse healthcare settings and populations.

RESULTS and DISCUSSION

Role of Al in Vision Sciences: Anatomical and Clinical Perspectives

Al Applications by Ocular Structure

Cornea and Anterior Segment: Al has revolutionized the diagnosis and management of corneal disorders, particularly
keratoconus, through advanced analysis of corneal topography and tomography data. Modern Al algorithms trained on
Scheimpflug-based tomography (e.g., Pentacam, Galilei) and anterior segment OCT (AS-OCT) have achieved specificities
in excess of 98.3% and sensitivities in excess of 96.8% for detecting manifest keratoconus, as validated by recent Cochrane
reviews [8, 9]. These Al systems analyze parameters, such as maximum keratometry, corneal thickness distribution, and
posterior elevation maps, allowing identification of subclinical cases that have been missed by traditional indices [10, 11].
Novel approaches in detecting keratoconus involve integration of corneal biomechanics (e.g., deformation amplitude and
applanation time from the Corvis ST) into machine learning models for the analysis of dynamic deformation videos,
achieving 99.6% diagnostic accuracy [12]. Automated screening for corneal dystrophies and anterior segment
abnormalities can benefit from the ability of Al to standardize interpretations of imaging data. While less extensively
studied than other Al-based models for detecting keratoconus, AI models trained on epithelial thickness mapping and
polarization-sensitive OCT have shown promise in detecting subtle stromal irregularities [10, 11]. For cataract screening,
Al-based systems can automate the classification of lens opacities from slit-lamp and AS-OCT images, although current
applications remain less mature than those used for keratoconus. Systems are also emerging that aim to integrate
multimodal data to predict post-surgical outcomes and optimize intraocular lens (IOL) power calculations [11, 13-15].

Challenges regarding the implementation of Al in the visual sciences include addressing dataset biases, such as
underrepresentation of diverse ethnicities, and ensuring generalizability across imaging devices [7, 11]. Key advances in
this field include: 1) Early detection: Al-based systems can identify subclinical keratoconus by using tomographic
features, such as abnormal posterior curvature, enabling timely interventions [11, 13-15]. 2) Biomechanical analysis:
Machine learning models (e.g., five-layer feedforward networks) leverage dynamic corneal response parameters to
diagnose keratoconus without topographical data [12]. 3) Clinical integration: Mobile-based Al tools for low-resource
settings could democratize access to corneal ectasia screening [7, 11].

However, most available AI models rely on Scheimpflug tomography, limiting their applicability in clinics with
Placido-disk-only devices [10]. In addition, Al tools for forecasting keratoconus progression remain experimental, with
current models achieving an area under the curve (AUC) of 0.81 by using clinical and biomechanical inputs [11, 13].
Additionally, further refinements are required in algorithmic transparency and patient consent as Al assumes more
prominent diagnostic roles [7, 13]. The existing integration of Al into corneal diagnostics highlights its potential to
enhance diagnostic precision while underscoring the need for robust validation and equitable deployment of these
approaches.

Lens: Al has significantly advanced IOL power calculation for cataract surgery, addressing longstanding challenges in
refractive accuracy. Modern machine learning formulas, such as the Kane, Hill-RBF 3.0, and ZEISS Al formulas, have
leveraged large clinical datasets to improve predictions by incorporating variables such as axial length (AL), keratometry,
and anterior chamber depth. The Kane formula has emerged as the leading formula, achieving the lowest mean absolute
error (MAE) and the highest percentage of patients attaining postoperative refraction within + 0.5 D of the target
refraction in a systematic review [16]. For highly myopic eyes (AL >26 mm), the XGBoost and Hill-RBF algorithms have
outperformed traditional formulas, such as the SRK/T and Holladay 1 formulas, with superior accuracy in predicting
postoperative refraction [17]. The ZEISS AI IOL calculator integrates paraxial ray tracing and a proprietary database of >
16 000 IOL parameters, eliminating reliance on A-constants and reducing transcription errors through automated data
processing [18]. Prediction of postoperative outcomes can benefit from the ability of Al to analyze multifactorial
interactions between biometric data and surgical variables. For example, newer prediction models have incorporated
effective lens position estimations, which are critical for minimizing refractive surprises. The Hill-RBF 3.0 formula has
demonstrated exceptional accuracy in medium-to-long eyes, while the PEARL DGS has shown promise in diverse
populations, although it requires further validation [15, 16]. Challenges persist in post-refractive surgery eyes, where Al
models trained on hybrid datasets that combine historical and current biometric data have shown improved reliability

as compared to traditional adjustment methods, such as the clinical history approach [14].
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Key advances in this field include: 1) Data-driven algorithms: Al tools, such as the ZEISS AI and Kane formulas, use
real-world surgical outcomes to refine predictions dynamically [16]. 2) Specialized populations: Al formulas have
achieved MAEs < 0.30 D in highly myopic eyes, reducing the risk of hyperopic surprises [17]. 3) Workflow integration:
Automated platforms, such as the ZEISS Al IOL calculator, streamline calculations without altering clinical workflow
[18].

However, many of these Al-based formulas have been validated primarily on Caucasian populations, necessitating
region-specific adjustments [16, 17]. In addition, AI models still rely on historical keratometry data, which may be
unavailable for some patients. Moreover, novel Al-based formulas require prospective validation and regulatory
approval before they can be widely adopted [16]. By enhancing precision and adaptability, Al may redefine standards in
IOL power calculation, although equitable deployment and ongoing validation remain critical for universal adoption.
Retina: Al has revolutionized the diagnostics of retinal conditions through automated detection and grading of DR. The
EyeArt system, which has been FDA-approved for autonomous DR screening, demonstrated 95.8-99.1% sensitivity for
detecting referable DR and sight-threatening DR (STDR) by using non-dilated fundus images. This outperforms general
ophthalmologists in terms of sensitivity while maintaining a specificity above 80% [20]. Validated on smartphone-based
imaging devices, such as the Remidio FOP, the EyeArt system has achieved 99.1% sensitivity for STDR, indicating its
utility for mass screening in low-resource settings without specialist dependency [21]. Similarly, IDx-DR (now
LumineticsCore) has pioneered FDA-approved autonomous DR detection, although the current literature emphasizes
the EyeArt system’s validation and superior performance across diverse populations and camera models [20, 22, 23]. For
AMD, Al models can analyze OCT and fundus images to detect geographic atrophy, drusen progression, and conversion
to neovascular AMD. Deep learning models, such as DeepSeeNet, can predict 5-year progression risks by quantifying
biomarkers (e.g., hyperreflective foci, retinal pigment epithelium abnormalities), achieving AUCs exceeding 0.90 for late
AMD prediction [20, 24, 25]. Emerging tools also integrate genetic risk scores and multimodal imaging to refine
personalized risk assessments.

In retinopathy of prematurity (ROP), Al systems, such as i-ROP DL, have automated plus-disease detection by using
convolutional neural networks (CNNs) and have achieved expert-level agreement in classifying vascular severity [26-29].
These Al-based tools address the global shortage of ROP specialists, although real-world deployment will require
validation of these approaches across neonatal populations and camera types. Al has also enhanced the detection of
retinal DR, vascular occlusions, and retinal detachment by identifying subtle features, such as intraretinal fluid, cotton
wool spots, and vascular tortuosity in fundus and OCT images. For example, CNNs trained on ultra-widefield
angiography have achieved 95% accuracy in diagnosing central retinal vein occlusions, while Al-based models analyzing
spectral-domain OCT (SD-OCT) have detected rhegmatogenous detachments with 97% sensitivity [30-31]. Generative Al
has advanced retinal research through synthetic image synthesis and disease modeling. Diffusion models can generate
high-fidelity fundus images with customizable pathologies for algorithm training, without raising patient privacy
concerns. These systems can also simulate disease progression under hypothetical therapeutic interventions, thereby
facilitating clinical trial design [32-35].

Key challenges include addressing dataset biases, such as underrepresentation of African and indigenous
populations in DR models, and ensuring regulatory compliance for autonomous systems. Federated learning frameworks
have shown promise in enhancing generalizability while preserving data privacy [21]. Key advances in this field include:
1) Progression modeling: Al can quantify OCT-based biomarkers for AMD and DR staging [20, 24, 25]. 2) Resource
optimization: Autonomous tools for ROP detection and monitoring can reduce reliance on specialist grading [26-29].

However, most DR models have been validated on Western/Asian cohorts, limiting their global applicability [20, 21,
30]. Moreover, standards for generative Al in clinical decision-making remain underdeveloped [32]. Additionally, the
performance of these Al tools drops when they are applied to non-validated camera models [21]. The integration of Al
into retinal care has underscored its potential to democratize diagnostics while illustrating the need for robust ethical
frameworks to ensure equitable implementation.

Optic Nerve and Glaucoma: Deep learning models have demonstrated exceptional accuracy in glaucoma detection based
on multimodal imaging and functional data. For fundus photography, meta-analyses have reported a pooled sensitivity
of 92% (95% confidence interval [CI]: 0.89-0.94) and specificity of 93% (95% CI: 0.90-0.95), with an area under the receiver
operating characteristic curve (AUROC) of 0.90 (95% CI: 0.88-0.92), outperforming traditional clinical assessments [36,
37]. Notably, models trained on optic nerve head (ONH)-centered images have achieved AUCs up to 0.94, but recent

studies have revealed that significant diagnostic information exists outside the ONH: models that analyzed the peripheral
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retinal regions only still achieved AUCs of 0.88 for glaucoma detection and explained 37% of the vertical cup-to-disc ratio
variance [38, 39]. This capability is crucial in high myopia cases, where tilted optic discs complicate traditional
assessments, as demonstrated by the maintained high accuracy of specialized deep learning tools in myopic cohorts [38,
40].

OCT-based Al models have shown slightly lower performance, with a pooled sensitivity of 90% (95% CI: 0.84-0.94)
and specificity of 87% (95% CI: 0.81-0.91), AUROC 0.86 (95% CI: 0.83-0.90) [36]. Nevertheless, OCT remains invaluable
for objective structural quantification, particularly in training "machine-to-machine" algorithms that predict retinal nerve
fiber layer (RNFL) thickness from fundus photos, with a 7.39-um MAE, matching the diagnostic accuracy of OCT to the
true RNFL thickness from SD-OCT (AUC: 0.944 vs. 0.940) [41, 42]. Hybrid approaches, such as the AI-GS network that
combines six lightweight models, can enhance real-world applicability by maintaining high accuracy (AUC > 0.90) while
reducing computational load [43]. Glaucoma progression analysis is more complex, with current AI models
demonstrating lower robustness in progression analysis than in diagnostic tasks [36]. Emerging solutions utilize visual
field archetypes derived from unsupervised learning to identify distinct progression patterns, thereby enabling earlier
intervention. However, model performance in this respect remains dependent on disease severity: models achieve AUCs
of 0.99 for advanced glaucoma (mean deviation < -4.0 decibel), but these values drop to 0.88 for early-stage cases [44].
Integration of multimodal data, such as data from OCT, visual fields, and clinical history, shows promise for improving
progression forecasts, although real-world validation studies are currently limited [36, 37, 45, 46].

Key challenges include ancestry-related performance disparities, with fundus models achieving higher accuracy in

African-descent patients (AUC: 0.97 vs. 0.85 in European-descent), while OCT models show an inverse trend [44, 47, 48].
Moreover, Al applications continue to face limitations in cases involving atypical optic disc anatomy, such as cases with
tilted, crowded, or anomalous discs, and the risk of misclassification in these cases remains significant [49]. Addressing
these limitations requires diverse training datasets and regulatory frameworks prior to clinical deployment. Future
directions should emphasize federated learning to harmonize global data, while preserving privacy, and dynamic risk
models incorporating longitudinal imaging and genetic data to refine progression predictions [36, 38].
Extraocular Muscles and Binocular Vision: Al has advanced strabismus detection and measurement through innovative
analysis of facial and ocular images. CNNs trained on facial photographs have achieved 86.38% accuracy in binary
classification (strabismus vs. normal) and 92.7% accuracy in multi-class categorization (e.g., esotropia, exotropia
subtypes), outperforming traditional screening methods in resource-limited settings [50]. Specialized wearable systems
using infrared eye-tracking have demonstrated even greater precision, with one study reporting 97.1% diagnostic
accuracy across diverse patient conditions [51]. For quantitative deviation measurement, Al platforms have achieved
limits of agreement of + 6.6°-7.0°, as compared to prism cover tests, rivaling clinician assessments in prospective trials
[52]. Mobile-based Al apps can further democratize access, enabling nine-gaze position analysis through smartphone
cameras, although current models have shown variable performance (73-80% sensitivity) [53, 54]. By leveraging the
ability of AI to detect subtle binocular vision anomalies and refractive imbalances from ocular images, Al can be used to
enhance amblyopia risk prediction. While direct amblyopia-specific models are less well-documented, strabismus
detection systems can indirectly identify high-risk cases, as misalignment is a leading cause of deprivation amblyopia.
Emerging tools have integrated ocular motility videos with machine learning to predict treatment responses, with
support vector machines achieving 82.1% accuracy in postoperative outcome forecasting [55]. Al-assisted prism
adaptation simulations and surgical target angle suggestions (+ 5.5-6.1° accuracy) can optimize intervention timing,
reducing the risk of irreversible vision loss [52].

However, African and indigenous populations are not represented in most training datasets, leading to a risk of
biased performance [50, 54]. In addition, analysis of static images may miss intermittent strabismus patterns that are
detectable only through video-based eye movement tracking [55]. Additionally, autonomous diagnostic apps require
validation against gold-standard tests, such as the alternate prism cover test [53]. Future directions should focus on
multimodal integration, combining gaze behavior videos, genetic risk data, and refractive error maps, to enhance
predictive power for amblyopia management. Federated learning frameworks could address data diversity gaps while
preserving patient privacy [54, 55].

Refractive Errors and Axial Length: Al has transformed the prediction of myopia progression by machine learning
models that integrate ocular biometric parameters, environmental factors, and imaging data. The Shenzhen Eye Hospital
study has demonstrated that models using AL as a key predictor could achieve AUCs of 0.833-0.846 for myopia risk
stratification, with AL identified as the most significant risk factor (odds ratio [OR] = 8.203) [56]. Advanced algorithms,
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such as extreme gradient boosting trees (XGBoost), random forests, and leverage multimodal inputs have achieved
accuracies exceeding 70-80% for the prediction of myopia risk. Support vector machine algorithms have exhibited the
highest accuracy in this respect [56, 57]. Notably, DeepMyopia, a deep learning system combining fundus images with
AL and demographic data, achieved AUCs of 0.908, 0.813, and 0.810 for 1-, 2-, and 3-year myopia onset predictions,
respectively, even without cycloplegic refraction [57]. Exceptional precision has been reported for progression prediction
by newer models: a linear regression-based algorithm achieved an R? of 0.964 and an MAE of 0.119 D, while longitudinal
deep learning models analyzing fundus sequences achieved 0.311 D/year error margins and AUCs up to 0.995 for high
myopia risk [58-60]. Al-based AL estimation from fundus images can circumvent the need for specialized biometry
devices. Emerging techniques have demonstrated machine-to-machine prediction of AL using retinal vasculature
patterns and optic disc morphology, although current implementations remain experimental as compared to optical
biometry (e.g., IOLMaster). The integration of generative adversarial networks (GANs) show promise in synthesizing
AL-correlated retinal features for training data augmentation, particularly in underrepresented populations [61].

Key challenges include dataset biases, given the East Asian predominance in training cohorts, and real-world
validation gaps, particularly for AL estimation tools. In terms of ethical considerations, equitable access should be
emphasized to prevent diagnostic disparities between regions with differing healthcare resources. Notably, AL
estimation models require validation across diverse fundus cameras. Furthermore, overreliance on Al predictions may
overshadow clinical judgment in borderline cases. Key advances in this field include: 1) Risk stratification: Al can identify
high-risk cohorts by using non-cycloplegic parameters, enabling scalable school screenings [57]. 2) Longitudinal
modeling: Deep learning can predict decadal myopia trajectories from single time-point data [59, 62]. The integration of
Al into refractive error management [63] underscores its potential for personalized interventions, although robust
safeguards against algorithmic bias are needed.

Neuro-ophthalmology: Al-driven retinal imaging has emerged as a non-invasive biomarker for detecting neurological
diseases, leveraging the role of the retina as a window into central nervous system health. For Alzheimer’s disease (AD),
the Eye-AD framework (validated in a multi-center study of 1671 participants) has analyzed OCT angiography (OCTA)
images of retinal microvasculature and choriocapillaris, and has achieved AUCs of 0.9355 (early-onset AD) and 0.8630
(mild cognitive impairment [MCI]) on internal datasets, with external validation demonstrating robust performance
(AUC 0.9007 for early-onset AD) [64]. The model employed a multilevel graph representation to decode relationships
between retinal layers, correlating biomarkers, such as reduced vessel density and foveal avascular zone enlargement,
with AD progression. The affordability and accessibility of retinal imaging position it as a scalable screening tool, in
particular as compared to costly neuroimaging or invasive cerebrospinal fluid tests [64, 65]. For stroke risk prediction, Al
can analyze retinal vascular patterns, such as the arteriole-to-venule ratio and fractal dimensions, from fundus photos.
While specific stroke-focused models are less well-documented, retinal biomarkers, such a microvascular abnormalities
and RNFL thinning, have been established as proxies for cerebral small vessel disease, a key stroke precursor [65].
Emerging tools have integrated ultra-widefield imaging and OCTA for detecting subtle ischemic changes, although
validations in prospective cohorts remain ongoing [65, 66]. Key advances in this field include: 1) Early detection: Al can
identify prodromal AD stages (e.g., MCI) through OCTA-based microvascular signatures [64]. 2) Population screening;:
Retinal imaging has enabled community-level dementia screening without specialist dependency. 3) Multimodal
integration: Combining retinal data with genetic risk scores and cognitive tests can enhance predictive accuracy [64, 65].

However, African and indigenous populations are underrepresented in most datasets, increasing the risk of biased
predictions. Furthermore, the causal link between retinal biomarkers and neurological pathology requires further
elucidation. In addition, autonomous diagnostic systems must undergo prospective clinical validation prior to regulatory
approval [65, 66]. As retinal imaging becomes a gateway for systemic health assessment, interdisciplinary collaboration
will be critical to translate Al innovations into clinical practice. Table 1 summarizes the roles of Al in ophthalmology as
discussed above.

Al in Optometric Practice

Al tools that enhance precision and efficiency have transformed diagnosis and strategic planning in optometry. Platforms
such as Altris Al streamline OCT analysis, addressing critical gaps in optometric practice—16% of clinicians avoid OCT
because of limited expertise, and 35% miss early pathologies weekly [67, 68]. Deep learning has strong potential in the
screening, diagnosis, and management of DR and ROP, enabling optometrists to prioritize high-risk cases without
dependence on specialists. Virtual assistants trained using clinical datasets achieve >95% accuracy in classifying patients

into refractive, binocular vision, or ocular disorder categories, streamlining triage and reducing diagnostic delays [69].
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Deep learning has shown considerable promise in advancing the clinical evaluation of dry eye disease through
automated image analysis. For instance, deep learning models have accurately segmented eyelid regions and quantified
meibomian gland atrophy using meibography images, offering consistent and objective assessments of glandular loss
[70]. Similarly, the application of deep learning in segmenting the tear meniscus using OCT images enhances the
evaluation of tear film dynamics and dry eye pathophysiology. Together, these technologies provide robust, quantitative
tools that can improve diagnostic precision and facilitate more effective clinical decision making in the management of
dry eye disease [71].

Deep learning also has significant potential in enhancing the diagnosis of keratoconus. The KeratoDetect algorithm,
for instance, achieved an impressive accuracy of 99.33% for its test dataset, indicating strong performance in identifying
keratoconus. Designed for rapid screening, it offers clinicians a promising tool for minimizing diagnostic errors and
streamlining treatment decisions [72]. Similarly, models utilizing color-coded AS-OCT maps are effective in
distinguishing keratoconus from normal corneas and in grading disease severity [73].

Deep learning has furthermore enhanced the early diagnosis of glaucoma by leveraging structural biomarkers from
optic nerve imaging. A novel deep learning-derived atlas glaucoma score incorporating an atlas-based augmentation
strategy for optic cup segmentation outperformed traditional cup-to-disc ratio metrics, achieving an AUC of 98.2%
compared to 91.4% with expert-derived cup-to-disc ratio, and demonstrating superior sensitivity to early morphological
changes indicating disease onset [74]. Additionally, 3D deep learning systems have shown robust performance in
detecting glaucomatous optic neuropathy [75]. Another deep learning model was trained to estimate neuroretinal
damage from optic disc photographs using SD-OCT-derived Bruch’s membrane opening-minimum rim width as a
reference. The method achieved an AUC of 0.945—comparable to that of actual SD-OCT measurements —highlighting its
diagnostic reliability [76]. This demonstrates the potential of deep learning to improve glaucoma screening accuracy,
reduce reliance on manual grading, and facilitate earlier intervention. However, further prospective validation and cost-
effectiveness analyses are warranted.

Deep learning has demonstrated strong potential in the diagnosis and management of AMD, with performance
levels approaching or even surpassing those of expert clinicians. For example, CNNs trained using OCT and OCTA
images achieved diagnostic accuracies of 94% and 91%, respectively, with accuracy improving to 96% when multimodal
imaging was integrated —underscoring the value of combining diverse data inputs [77]. Additionally, deep learning-
based assessments of fundus images have performed comparably to human graders, suggesting a viable role for
automated systems in screening, monitoring, and reducing the costs and barriers associated with AMD care. These
findings highlight the clinical utility of Al in enhancing diagnostic precision and expanding access to effective AMD

management [78].

Ethical Concerns in Al for Vision Sciences
Ethical implementation of Al remains paramount, with industry leaders emphasizing bias mitigation, data stewardship,
and vendor liability as core requirements. Key challenges include ensuring regulatory compliance for autonomous
diagnostic tools and addressing dataset biases that may disproportionately affect underserved populations. Federated
learning frameworks show promise in harmonizing diverse datasets while preserving patient privacy. As Al becomes
embedded in optometric practice, interdisciplinary collaboration will be critical to balance innovation with ethical
responsibility [67].
Transparency and Explainability
The integration of interpretable Al models in clinical decision making is critical to bridging the gap between algorithmic
outputs and clinician trust. In vision sciences, models that provide human-understandable rationales—such as
highlighting retinal microaneurysms in DR or ONH cupping in glaucoma—enable clinicians to validate Al findings
against their expertise [79]. For instance, the Multimodal Medical Concept Bottleneck Model (MMCBM) for choroidal
tumor diagnosis directly incorporates radiologist-defined concepts such as tumor vascularity patterns and lesion
morphology into its decision-making pipeline, allowing ophthalmologists to adjust concept weights and refine
predictions interactively [80]. This approach aligns with clinical workflows, in which transparency in feature attribution
builds confidence in Al-assisted diagnoses [79].

The risks of “black box” algorithms are particularly critical for vision care, as misdiagnoses can lead to irreversible
vision loss. For example, using a model predicting glaucoma progression based solely on OCT-derived thickness maps,

without understanding its reliance on peripapillary RNFLparameters, may cause clinicians to overlook confounding
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factors such as high myopia [79]. The opaque models for rare diseases, such as uveal melanoma, risk misclassifying
tumors if their reasoning remains disconnected from established clinical markers [80]. Moreover, dataset biases—such as
underrepresentation of diverse ethnicities in training cohorts—can propagate silently in black box systems, exacerbating
diagnostic disparities [81].

Vision-specific solutions emphasize concept-based interpretability, in which models such as MMCBM decompose
decisions into clinically meaningful components that mirror radiologists’ diagnostic criteria [80]. Saliency maps, while
common, often fail to capture higher-order clinical reasoning; instead, attention mechanisms that localize and describe
lesions in radiology-report-aligned language offer more actionable insights [79, 80]. Regulatory frameworks increasingly
demand such transparency, as seen in FDA-cleared systems requiring explainability modules to justify outputs during
audits [79].

Key challenges include balancing model complexity with interpretability [80]. Future directions advocate federated
learning to diversify training data, while preserving patient privacy, and interactive interfaces that allow real-time
clinician—AlI collaboration [80, 81]. Key advances in this field include 1) Clinical alignment: Models such as MMCBM use
expert-defined concepts to mirror diagnostic workflows [80], and 2) Regulatory compliance: Explainability frameworks
are now prerequisites for FDA clearance of ophthalmic Al tools [79]. However, rare disease models may struggle to
represent nuanced phenotypes without exhaustive concept libraries [80]. Additionally, few interpretability methods
undergo prospective trials to assess real-world clinical impact [79]. Ensuring transparency in ophthalmic Al is not only a
technical requirement but also an ethical imperative, enabling clinicians to remain responsible for the interpretation and
application of Al-generated insights.

Responsibility and Accountability

The attribution of responsibility for Al-related errors in vision care remains a critical challenge, requiring clear
frameworks to balance clinician oversight, developer obligations, and institutional governance. The IDx-DR case
exemplifies this complexity, in which the company assumed liability for diagnostic errors through contractual
agreements, attempting to close the responsibility gap between clinicians and developers [82-84]. However, real-world
implementation challenges persist, as demonstrated by the Al-based Surgical Safety System Study, in which errors
occurred primarily in non-authenticated cases or because of delayed IOL model updates, highlighting the interplay of
human factors and technical limitations [85]. This underscores the need for shared accountability, in which clinicians
retain ultimate responsibility for patient care decisions, developers ensure model robustness and timely updates, and
institutions enforce protocol adherence and staff training [82, 85].

Defining roles requires addressing workflow integration and error cascades. For instance, the surgical Al system’s
near-miss detection improved substantially; however, its effectiveness depended on consistent use, with errors persisting
when staff circumvented authentication [85]. Clinicians must verify Al outputs against clinical context, particularly in
high-stakes scenarios such as IOL selection or surgical laterality [85]. Developers, meanwhile, bear responsibility for
algorithmic transparency and model maintenance, as outdated IOL databases directly contribute to implantation errors
[85-87]. Institutions play a pivotal role in risk mitigation, ensuring that Al tools align with existing safety protocols and
fostering a culture in which staff can override Al decisions without fear of reprisal [85, 87, 88].

Key challenges include liability fragmentation, in which errors may stem from overlapping failures (e.g., a clinician
ignoring Al alerts compounded by a developer’s delayed model update). The low positive predictive value (12%)
observed in some Al-assisted DR systems further complicates accountability, as false positives may erode clinician trust
and lead to overtesting [89, 90]. Regulatory frameworks must evolve to address these nuances, potentially mandating
error attribution protocols and real-world performance monitoring as part of post-marketing surveillance [85, 86]. Future
directions emphasize collaborative governance models, in which developers provide explainable failure modes, clinicians
document Al-informed decisions, and institutions audit adherence to safety checklists [85, 91, 92]. The economic
implications of shared accountability —such as cost-benefit analyses showing potential savings of up to $2.7 million
because of error reduction—further incentivize systemic reforms [85]. Key advances in this field include 1) Shared
liability: The contractual approach of IDx-DR provides a template for developer—clinician accountability partnerships
[82], and 2) Workflow integration: Al systems that enforce authentication (e.g., facial recognition in 1.13 attempts) reduce
human error when properly adopted [85]. However, unrepresentative training data may disproportionately shift liability
to clinicians handling borderline or equivocal cases [86]. Additionally, no standardized protocols exist for attributing
errors in Al-assisted surgeries involving multiple stakeholders [85, 93-95]. Accountability in Al-driven vision care

demands interdisciplinary collaboration to align technical capabilities with clinical realities and ethical imperatives.
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Retina [20-35]

Optic Nerve and
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Extraocular
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Binocular Vision
[50-55]

Refractive Errors
and Axial Length
[56-63]

Neuro-
ophthalmology
[64-66]

Key AI Applications & Technologies

- Keratoconus detection
(Scheimpflug/AS-OCT, biomechanics)
- Corneal dystrophy screening

- Cataract classification (slit-lamp/AS-
OCT)

- IOL calculation (Kane, ZEISS Al, and
Hill-RBF)

- IOL power calculation (machine
learning formulas)

- Automated lens opacity grading

- Diabetic retinopathy (DR) screening
(EyeArt, IDx-DR)

- AMD progression prediction (OCT,
DeepSeeNet)

- ROP detection (i-ROP DL)

- Retinal vascular occlusion/retinal
detachment detection

- Generative Al for synthetic images

- Glaucoma detection (fundus/OCT,
hybrid models)

- Progression analysis (visual field/OCT
integration)

- Machine-to-machine RNFL estimation

- Strabismus detection (facial photos,
CNNs)

- Eye-tracking for deviation
measurement

- Amblyopia risk prediction

- Surgical outcome forecasting

- Myopia progression prediction
(biometrics, environment)
- Personalized risk modeling

- Al-driven retinal imaging: Used as a
non-invasive biomarker to detect
neurological diseases, particularly risks
of AD and stroke.

- Eye-AD framework: An Al system
utilizing OCTA to analyze retinal
microvasculature and choriocapillaris
in the context of AD detection.

- Multilevel graph representation: A
technique used within the Eye-AD
model to analyze relationships between
retinal layers and extract disease-
related biomarkers.

- Fundus photography and AI: Applied
in stroke risk prediction by analyzing
retinal vascular patterns.

- Emerging tools: Integration of ultra-
widefield imaging and OCTA to detect
subtle ischemic changes associated with
cerebral small vessel disease.
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Table 1. Summary of the roles of artificial intelligence in ophthalmology

Diagnostic Performance and
Outcomes

- Sensitivity 98.6% and specificity
98.3% for keratoconus

- 99.6% accuracy with
biomechanical models

-IOL MAE <0.30 D in myopic eyes

- Highest % within + 0.5 D of target
(Kane, ZEISS Al)

- Improved accuracy in long eyes

- DR: Sensitivity > 95%, specificity >
80%

- AMD: AUC > 0.90 for late AMD
prediction

-ROP: 1> 0.9 (expert-level
agreement)

- Vascular occlusion: 95% accuracy
- Detachment: 97% sensitivity

- Fundus: Sensitivity 92%,
specificity 93%, and AUC 0.90

- OCT: Sensitivity 90%, specificity
87%, and AUC 0.86

- Advanced glaucoma: AUC 0.99

- Early-stage: AUC 0.88

- Strabismus: 86-92% accuracy
(image-based)

- Eye-tracking: 97.1% accuracy
- Amblyopia risk: indirect via
strabismus models

- Surgical prediction: 82.1%
accuracy

- AUC 0.83-0.85 for myopia risk
- AL as key predictor

-Alzheimer’s disease (AD):

Eye-AD achieved an AUC of 0.9355
for early-onset AD and 0.8630 for
MCI on internal datasets.

- External validation yielded an
AUC of 0.9007 for early-onset AD,
confirming robust performance.

-Stroke risk prediction:
Achievements of specific Al
models are less well-documented,
but retinal features, such as RNFL
thinning and microvascular
abnormalities, are recognized
proxies for cerebral small vessel
disease, which is a precursor for
stroke.

Clinical Impact and
Advancements

- Early, subclinical
keratoconus detection

- Automated, standardized
screening

- Improved refractive
outcomes in cataract surgery

- Personalized IOL selection
- Workflow automation

- Autonomous DR and ROP
screening

- Personalized AMD risk
modeling

- Synthetic data for
research/training

- Early detection in
myopic/complex cases
- Objective, automated
progression monitoring
- Multimodal risk
stratification

- Accessible screening via
mobile apps

- Quantitative deviation
measurement

- Postoperative outcome
prediction

- Early intervention for high-
risk children

- Data-driven public health
strategies

- Early detection: Al models
can identify prodromal AD
stages, including MCI, based
on OCTA-derived
microvascular signatures.

- Scalable screening tools:
Retinal imaging offers a cost-
effective and accessible
alternative to neuroimaging
and cerebrospinal fluid
analysis, making it suitable
for community-level
screening.

- Multimodal integration:
Combining retinal imaging
with genetic risk scores and
cognitive tests enhances
predictive performance and
accuracy in
neurodegenerative disease
screening.

- Reduced specialist
dependency: Al tools support
autonomous or semi-
autonomous screening,
potentially extending care to
underserved or remote
populations.

Limitations and Challenges

- Device/data bias (Scheimpflug
reliance)

- Limited validation in diverse
populations

- Experimental progression
models

- Underrepresentation of non-
Caucasian data

- Need for prospective validation
- Dataset bias (ethnicity, camera
type)

- Regulatory/validation gaps

- Limited standards for generative
Al

- Ancestry-related performance
disparities

- Explainability gaps

- Lower robustness for
progression prediction

- Underrepresentation in training
datasets

- Limited video-based analysis

- Need for gold-standard
validation

- Limited external validation
- Integration of environmental
data still emerging

- Population bias:
Underrepresentation of African
and indigenous populations in
datasets could compromise
generalizability and introduce
bias in predictive models.

- Pathophysiological uncertainty:
The causal relationship between
retinal biomarkers and
neurological diseases, such as AD
and stroke, is not yet fully
understood.

- Validation requirements: Al-
based diagnostic systems require
prospective clinical validation
and regulatory approval before
integration into routine clinical
workflows.

- Clinical translation needs:
Successful implementation will
depend on interdisciplinary
collaboration across
ophthalmology, neurology, Al
development, and public health.

Abbreviations: AS-OCT, anterior segment optical coherence tomography; IOL, intraocular lens; MAE, mean absolute error; D, diopter; DR, diabetic

retinopathy; AMD, age-related macular degeneration; ROP, retinopathy of prematurity; OCT, optical coherence tomography; RNFL, retinal nerve

fiber layer; CNN, convolutional neural network; AL, axial length; AUC, area under the curve.
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Bias, Fairness, and Generalizability

The risks of bias in ophthalmic Al models due to non-representative training data are well documented, particularly
concerning ethnicity, age, and comorbidities. Models trained on predominantly White cohorts exhibit reduced accuracy
in underrepresented groups, such as individuals with darker retinal pigmentation, in whom higher melanin
concentrations in the uvea can obscure DR lesions [96]. For example, a DR diagnostic model trained without sufficient
darker-skin exemplars demonstrated a 12.5% accuracy disparity between lighter- and darker-skin groups, directly
attributable to fundus pigmentation differences [96]. Challenges in external validation further compound these issues, as
Al tools often underperform in real-world settings with demographic or socioeconomic profiles divergent from those of
their training cohorts. A study evaluating an Al algorithm in an Armenian population —not included in its training data—
achieved 94.1% sensitivity for referable DR; however, false positives arose primarily from confounding pathologies such
as AMD, underscoring the need for multiclass disease recognition in generalizable models [97]. The Retinal Pigment Score
(RPS), an objective metric classifying fundus pigmentation independent of self-reported ethnicity, addresses this by
enabling developers to audit dataset diversity and mitigate pigmentation-related biases. However, most existing tools
lack such biological grounding, instead relying on subjective ethnic labels that poorly correlate with retinal phenotypes
[98].

Generalizability barriers extend to clinical workflows and imaging devices. Al systems validated on high-resolution
images from specialized cameras often struggle with images from smartphone-based or portable fundus cameras, which
are critical for low-resource settings [97]. Federated learning frameworks show promise in harmonizing data across
institutions while preserving patient privacy, though regulatory and technical hurdles remain [99].

Key solutions include 1) Synthetic data augmentation: GANSs create synthetic fundus images of underrepresented
phenotypes, reducing accuracy disparities between subpopulations [96], 2) Ethnicity-agnostic metrics: The RPS replaces
subjective ethnic classifications with biologically relevant pigmentation assessments, enabling equitable model
evaluation [100], and 3) Post-marketing surveillance: Continuous monitoring for performance decay across demographics
ensures sustained efficacy post-deployment [97]. Future directions emphasize global collaboration to build diverse
datasets and regulatory mandates for transparency in training data composition, ensuring that Al tools meet the needs
of heterogeneous populations. Key advances in this field include 1) RPS: Enables bias detection without reliance on self-
reported ethnicity, and 2) Generative debiasing: Synthetic images narrow accuracy gaps between subpopulations [96, 101,
102]. However, performance varies across camera models, limiting scalability [97]. Most models lack training on patients
with multiple ocular/systemic conditions. Addressing bias and ensuring generalizability require ongoing efforts to
diversify training data, standardize evaluation metrics, and enforce transparency in Al development.

Privacy and Data Security

The use and sharing of sensitive ocular imaging data in Al development raise critical privacy concerns, particularly
regarding re-identification risks and informed consent frameworks. Retinal images, while often considered less
identifying than facial photographs, contain unique vascular patterns that could theoretically enable patient re-
identification when combined with external datasets. Studies highlight the limitations of traditional de-identification
methods, which strip metadata but may not fully anonymize image content, necessitating advanced techniques such as
differential privacy or synthetic data generation to mitigate risks [103, 104]. For instance, GANs can create synthetic
fundus images that preserve pathological features while eliminating identifiable patient markers, though these require
careful calibration to avoid introducing diagnostic artifacts [104]. Compliance with data protection regulations demands
rigorous safeguards, including encryption protocols for data in transit and at rest, role-based access controls, and audit
trails to track data usage. The National Health Service (NHS)’s opt-out model for data sharing exemplifies a balanced
approach, allowing retrospective research on de-identified datasets while enabling patients to withdraw consent [104].
However, challenges persist in global harmonization, as regulations such as the General Data Protection Regulation
(GDPRY)’s “right to be forgotten” conflict with the need of Al for immutable training datasets. Contractual agreements
that prohibit data linkage or re-identification attempts are increasingly standardized, as seen in collaborations between
academic institutions and Al developers [104, 105].

Key challenges include 1) Model inversion attacks: Large-parameter Al systems risk memorizing training data,
enabling malicious actors to reconstruct private images through adversarial techniques [104], 2) Public misconceptions:
Conflation of retinal imaging with iris recognition increases reluctance to share data, necessitating patient education
initiatives [106], and 3) Regulatory fragmentation: Differing requirements across jurisdictions complicate multinational

Al development, particularly for cloud-based platforms [107]. Emerging solutions include 1) Federated learning: This
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enables model training across decentralized datasets without raw data exchange, reducing breach risks [104], 2)
Blockchain-based audits: Immutable ledgers track data provenance and usage, ensuring compliance with consent
agreements [108], and 3) Dynamic consent platforms: These allow patients to granularly control data access permissions
over time [109]. Striking a balance between innovation and privacy requires adaptive frameworks that prioritize patient
autonomy while fostering collaborative Al development. Key advances in this field include 1) Synthetic data: GANs
generate privacy-preserving fundus images without patient-specific features [104], and 2) Opt-out models: These balance
research needs with patient autonomy in data sharing [104]. However, poorly tuned synthetic data may distort
pathological features, compromising diagnostic validity. Moreover, overly complex consent frameworks reduce patient
engagement and dataset diversity [104].

Informed Consent and Patient Autonomy

The integration of AI into ophthalmic care necessitates transparent communication about algorithmic involvement to
preserve patient autonomy. Studies emphasize disclosing the role of Al in diagnosis, including its limitations (e.g.,
performance variability across ethnicities) and decision-making authority (e.g., whether human oversight is retained)
[110]. For instance, Ursin et al. devised a checklist mandating eight specific disclosures for Al-assisted DR screening,
including risks of algorithmic bias, cyberattacks, and data usage protocols, ensuring that patients understand how Al
influences their care [110]. Ensuring patient understanding requires addressing health literacy disparities and algorithmic
mistrust. Their study highlights that in order to make informed choices, patients must grasp how Al generates
diagnoses —including its reliance on training data patterns rather than clinical reasoning [110]. However, over-reliance
on Al-generated recommendations risks undermining patient trust, particularly when they perceive diminished clinician
involvement, as noted in ophthalmology-specific analyses [82, 111]. To mitigate this, hybrid consent models that combine
Al-generated explanations with clinician verification are emerging as best practices [112].

Key challenges include 1) Regulatory inconsistencies: While the EU’s GDPR prohibits fully automated diagnoses
without human review, U.S. guidelines lack similar clarity, creating disparities in consent requirements [110, 112], 2)
Algorithmic transparency: Patients may struggle to comprehend the probabilistic outputs of Al, necessitating simplified
explanations [110, 111, 113], and 3) Voluntariness: Offering non-Al alternatives is ethically mandated but logistically
complex in resource-limited settings [110]. Future directions advocate standardized consent frameworks that integrate
Al-specific disclosures into existing workflows, ensuring that patients retain autonomy without impeding technological
adoption. Key advances in this field include 1) Multilingual Al tools: Synthesia’s avatars [114] deliver culturally tailored
consent materials, and 2) Checklist standardization: The eight-item framework ensures comprehensive Al-related
disclosures [110]. However, simplified explanations risk oversimplifying the limitations of AI [110, 115]. Additionally,
adding Al disclosures lengthens consent processes, potentially reducing compliance [112]. Transparent communication
about the role and limitations of AI remains critical to maintaining patient—clinician trust in evolving ophthalmic

practices.

Scalability and Access
Al demonstrates transformative potential in improving access to eye care for underserved populations by enabling
decentralized screening and task-shifting to non-specialists. Autonomous systems such as Digital Diagnostics” Al for
diabetic eye disease have increased adherence to screening guidelines in historically disadvantaged groups. This has
closed the gap between low-income metropolitan populations (34% baseline adherence) and the national average (58.3%)
by boosting rates to 54.5% post-implementation [116]. However, equitable deployment remains critical to avoid
exacerbating health disparities. Al tools trained on non-representative datasets—often skewed toward urban, higher-
income populations —risk underperforming in marginalized groups, as seen in models that struggle with darker retinal
pigmentation or atypical disease presentations common in underserved cohorts [117]. For example, although AI has
enhanced access to diabetic eye disease screening overall, its implementation in remote areas has been hindered by
inconsistent internet connectivity and inadequate technician training, resulting in persistent service gaps for some
communities [116]. Without intentional design, Al could perpetuate diagnostic deserts, where regions lacking digital
infrastructure or technical support remain excluded from technological advancements.

Key solutions emphasize context-aware Al development, as follows: 1) Device-agnostic models: Tools such as Peek
Vision’s smartphone-based systems function offline or with low bandwidth, ensuring accessibility in areas with
unreliable internet access [118], 2) Culturally adapted training: Programs embedding local health workers in Al

deployment improve model generalizability and community trust, and 3) Regulatory incentives: Policies mandating
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diverse training datasets and post-marketing surveillance for performance disparities could standardize equitable Al
adoption [116]. Future directions require public—private partnerships to subsidize Al infrastructure in low-resource
settings, along with federated learning frameworks that pool globally diverse data while preserving patient privacy
[116]. Key advances in this field include 1) Task-shifting: Al enables community health workers to perform specialist-
level screenings, and 2) Healthcare Effectiveness Data and Information Set (HEDIS) measure improvement:
Autonomous Al narrows adherence gaps in diabetic eye exams [116]. However, through infrastructure dependency, Al
tools requiring high-end cameras or stable internet may exclude remote populations. Moreover, underserved groups
face higher misdiagnosis risks if training data lacks diversity [116]. Scalable Al deployment demands proactive equity
frameworks to ensure technological progress that translates into universal eye care access. Table 2 summarizes ethical
concerns in Al for vision sciences, as mentioned above.

The evolution of Al in vision sciences hinges on integrating multimodal data—combining retinal imaging, clinical
history, genetic profiles, and wearable device metrics —to create comprehensive diagnostic and prognostic models [119-
121]. Future models could incorporate genetic risk scores and longitudinal lifestyle data to predict disease trajectories
with higher precision. Multimodal Large Language Models, such as those tested in ophthalmology cases, show promise
in bridging imaging and clinical text analysis but require refinement to match specialist-level accuracy [122, 123].
Federated learning and privacy-preserving techniques will be critical for scaling Al without compromising sensitive data.
Models are needed that function across decentralized datasets while maintaining GDPR/ Health Insurance Portability
and Accountability Act (HIPAA) compliance [124]. Emerging solutions such as synthetic data generation and blockchain-
based audit trails could further secure patient information while enabling global collaboration. Ongoing validation must
address real-world performance gaps, particularly in diverse populations. The Nature GPT-4 V study revealed an
accuracy drop in complex cases [125], underscoring the necessity for prospective trials and post-marketing surveillance
to monitor algorithmic drift and bias [122, 126, 127]. Regulatory frameworks should mandate transparent reporting of
training data demographics and failure mode analyses, as recommended in the equity guidelines of the American
Academy of Ophthalmology.

This review offers a comprehensive and timely synthesis of Al applications in vision sciences, drawing on evidence
from multiple disciplines and international studies during the last two decades. A key strength lies in its targeted yet
inclusive search strategy, which included both ophthalmology and optometry across a wide range of ocular conditions
and imaging modalities. The focus on diagnostic performance, ethical considerations, and equitable implementation
provides a multidimensional perspective that is highly relevant to clinicians, researchers, and policymakers.
Furthermore, the inclusion of both established and emerging technologies ensures relevance to current clinical practice
and future innovation. However, this narrative review has inherent limitations. The non-systematic nature of the search
may introduce selection bias, and the exclusion of non-English literature may limit the global generalizability of the
findings. Additionally, while efforts were made to include high-quality and diverse studies, variations in study design,
population demographics, and outcome measures may affect the comparability of findings across sources. Despite these
limitations, the review provides a critical foundation for understanding the evolving role of Al in vision care and
highlights areas requiring further investigation. Clinician training in Al literacy —including model limitations, bias
recognition, and ethical deployment—will be essential. Patient-centered AI must prioritize explainability through
interfaces that translate probabilistic outputs into actionable insights. Generally, the transformative potential of Al in
vision sciences lies in democratizing diagnostics, personalizing therapies, and alleviating global eye care disparities.
However, realizing this potential demands ethical vigilance against algorithmic bias, rigorous validation across care
settings, and equitable deployment that prioritizes underserved populations. Interdisciplinary collaboration among
clinicians, data scientists, ethicists, and policymakers will be pivotal in balancing innovation with patient safety,

ensuring that Al augments —rather than replaces —human expertise.

Table 2. Summary of ethical concerns in artificial intelligence for vision sciences [67, 79-118]

Algorithmic Data Privacy and Bias and Equity Informed Consent Accountability and Regulatory and
Transparency Security Liability Validation Challenges
- Black-box models - Risks of patientre- | - Underrepresentation | - Patients may not - Unclear responsibility - Lack of standardized

limiting clinician and

identification from

of certain ethnicities

fully understand the

in case of misdiagnosis

validation across

patient imaging data. and populations in role of Alin their or harm. devices and
understanding. - Need for robust training datasets. care. - Challenges in assigning = populations.
- Lack of data encryption and | - Risk of perpetuating = - Need for clear liability between - Regulatory gaps for
explainability in federated learning. or amplifying communication about | clinicians, developers, autonomous Al
diagnostic decisions. healthcare disparities. | Al-driven decisions. and institutions. systems.
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CONCLUSIONS

Al is rapidly transforming vision sciences by improving diagnostic accuracy, streamlining clinical workflow, and
broadening access to quality eye care, particularly in underserved regions. Its integration into ophthalmology and
optometry thus holds significant promise for enhancing patient outcomes and optimizing healthcare delivery. However,
to harness the transformative potential of Al fully, sustained multidisciplinary collaboration, involving clinicians, data
scientists, ethicists, and policymakers, is essential. Rigorous validation processes, transparency in algorithm
development, and strong ethical oversight are equally important to mitigate risks such as bias, data misuse, and unequal
access. Responsible implementation of Al in the vision sciences is essential to ensure that all populations are served
equitably.

ETHICAL DECLARATIONS
Ethical approval: This study was a narrative review, and no ethical approval was required.

Conflict of interest: None.

FUNDING
None.

ACKNOWLEDGMENTS
None.

REFERENCES

1. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J.
2021 Jul;8(2):e188-e194. doi: 10.7861/fhj.2021-0095. PMID: 34286183; PMCID: PMC8285156.

2. Maleki Varnosfaderani S, Forouzanfar M. The Role of Al in Hospitals and Clinics: Transforming Healthcare in the 21st Century.
Bioengineering (Basel). 2024 Mar 29;11(4):337. doi: 10.3390/bioengineering11040337. PMID: 38671759; PMCID: PMC11047988.

3. Ahmadi A, RabieNezhad Ganji N. Al-driven medical innovations: transforming healthcare through data intelligence. International
Journal of BioLife Sciences (IJBLS). 2023 Oct 1;2(2):132-42. doi.org/10.22034/ijbls.2023.185475.

4.  Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications.
Bioengineering (Basel). 2023 Dec 18;10(12):1435. doi: 10.3390/bioengineering10121435. PMID: 38136026; PMCID: PMC10740686.

5. Chikhaoui E, Alajmi A, Larabi-Marie-Sainte S. Artificial intelligence applications in healthcare sector: ethical and legal challenges.
Emerging Science Journal. 2022 May 29;6(4):717-38. doi: 10.28991/ES]-2022-06-04-05.

6. Heidari Z, Baharinia M, Ebrahimi-Besheli K, Ahmadi H. A review of artificial intelligence applications in anterior segment ocular
diseases. Medical hypothesis, discovery & innovation in optometry. 2022 Sep 30;3(1):22-33. doi: 10.51329/mehdioptometry146.

7. Abd El-Khalek AA, Balaha HM, Sewelam A, Ghazal M, Khalil AT, Abo-Elsoud MEA, El-Baz A. A Comprehensive Review of Al
Diagnosis Strategies for Age-Related Macular Degeneration (AMD). Bioengineering (Basel). 2024 Jul 13;11(7):711. doi:
10.3390/bioengineering11070711. PMID: 39061793; PMCID: PMC11273790.

8. Tiong EWW, Liu SH, Ting DS]J. Cochrane corner: artificial intelligence for keratoconus. Eye (Lond). 2024 Dec;38(18):3406-3408. doi:
10.1038/s41433-024-03347-z. Epub 2024 Sep 19. PMID: 39300189; PMCID: PMC11621326.

9. Vandevenne MM, Favuzza E, Veta M, Lucenteforte E, Berendschot TT, Mencucci R, Nuijts RM, Virgili G, Dickman MM. Artificial
intelligence for detecting keratoconus. Cochrane Database Syst Rev. 2023 Nov 1511(11):CD014911.  doi:
10.1002/14651858.CD014911.pub2. PMID: 37965960; PMCID: PMC10646985.

10. Niazi S, Jiménez-Garcia M, Findl O, Gatzioufas Z, Doroodgar F, Shahriari MH, Javadi MA. Keratoconus Diagnosis: From
Fundamentals to Artificial Intelligence: A Systematic Narrative Review. Diagnostics (Basel). 2023 Aug 21;13(16):2715. doi:
10.3390/diagnostics13162715. PMID: 37627975, PMCID: PMC10453081.

11. Goodman D, Zhu AY. Utility of artificial intelligence in the diagnosis and management of keratoconus: a systematic review. Front
Ophthalmol (Lausanne). 2024 May 17;4:1380701. doi: 10.3389/fopht.2024.1380701. PMID: 38984114; PMCID: PMC11182163.

12. Tan Z, Chen X, LiK, LiuY, Cao H, Li ], Jhanji V, Zou H, Liu F, Wang R, Wang Y. Artificial Intelligence-Based Diagnostic Model for
Detecting Keratoconus Using Videos of Corneal Force Deformation. Transl Vis Sci Technol. 2022 Sep 1;11(9):32. doi:
10.1167/tvst.11.9.32. PMID: 36178782; PMCID: PMC9527334.

13.  Afifah A, Syafira F, Afladhanti PM, Dharmawidiarini D. Artificial intelligence as diagnostic modality for keratoconus: A systematic
review and meta-analysis. ] Taibah Univ Med Sci. 2024 Jan 1;19(2):296-303. doi: 10.1016/j.jtumed.2023.12.007. PMID: 38283379; PMCID:
PMC10821587.

14. Rampat R, Deshmukh R, Chen X, Ting DSW, Said DG, Dua HS, Ting DSJ. Artificial Intelligence in Cornea, Refractive Surgery, and
Cataract: Basic Principles, Clinical Applications, and Future Directions. Asia Pac ] Ophthalmol (Phila). 2021 Jul 1;10(3):268-281. doi:
10.1097/APO.0000000000000394. PMID: 34224467; PMCID: PMC7611495.

15. Gutierrez L, Lim JS, Foo LL, Ng WY, Yip M, Lim GYS, Wong MHY, Fong A, Rosman M, Mehta JS, Lin H, Ting DS], Ting DSW.
Application of artificial intelligence in cataract management: current and future directions. Eye Vis (Lond). 2022 Jan 7;9(1):3. doi:
10.1186/540662-021-00273-z. Erratum in: Eye Vis (Lond). 2022 Mar 11;9(1):11. doi: 10.1186/s40662-022-00283-5. PMID: 34996524;
PMCID: PMC8739505.

16. Stopyra W, Cooke DL, Grzybowski A. A Review of Intraocular Lens Power Calculation Formulas Based on Artificial Intelligence. ]
Clin Med. 2024 Jan 16;13(2):498. doi: 10.3390/jcm13020498. PMID: 38256632; PMCID: PMC10816994.

17. ZhouY, Dai M, Sun L, Tang X, Zhou L, Tang Z, Jiang J, Xia X. The accuracy of intraocular lens power calculation formulas based on
artificial intelligence in highly myopic eyes: a systematic review and network meta-analysis. Front Public Health. 2023 Nov
9;11:1279718. doi: 10.3389/fpubh.2023.1279718. PMID: 38026369; PMCID: PMC10670805.

267 Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1)



Artificial intelligence in ophthalmology
I ——

18. Wang L, Burwinkel H, Bensaid N, Koch DD. Evaluation of an artificial intelligence-based intraocular lens calculator: Al-based IOL-
optimized formula. ] Cataract Refract Surg. 2024 Dec 17;51(4):332-6. doi: 10.1097/j.jcrs.0000000000001603. Epub ahead of print. PMID:
39682055; PMCID: PMC11980897.

19. Stopyra W, Voytsekhivskyy O, Grzybowski A. Prediction of Seven Artificial Intelligence-Based Intraocular Lens Power Calculation
Formulas in Medium-Long Caucasian Eyes. Life (Basel). 2025 Jan 1;15(1):45. doi: 10.3390/1ife15010045. PMID: 39859985, PMCID:
PMC11766697.

20. Lim JI, Regillo CD, Sadda SR, Ipp E, Bhaskaranand M, Ramachandra C, Solanki K. Artificial Intelligence Detection of Diabetic
Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists' Dilated Examinations. Ophthalmol Sci. 2022 Sep
30;3(1):100228. doi: 10.1016/j.x0ps.2022.100228. PMID: 36345378; PMCID: PMC9636573.

21. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus
photography using artificial intelligence. Eye (Lond). 2018 Jun;32(6):1138-1144. doi: 10.1038/s41433-018-0064-9. Epub 2018 Mar 9.
PMID: 29520050; PMCID: PMC5997766.

22.  Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous Al-based diagnostic system for detection of diabetic
retinopathy in primary care offices. NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. PMID: 31304320; PMCID:
PMC6550188.

23. Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, Lim ]I, Sadda S, Domalpally A, Gray G, Bhaskaranand M,
Ramachandra C, Solanki K; EyeArt Study Group. Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection
of Referrable and Vision-Threatening Diabetic Retinopathy. JAMA Netw Open. 2021 Nov 1;4(11):e2134254. doi:
10.1001/jamanetworkopen.2021.34254.  Erratum  in: JAMA  Netw Open. 2021 Dec  1;4(12):e2144317.  doi:
10.1001/jamanetworkopen.2021.44317. PMID: 34779843; PMCID: PMC8593763.

24. PengY, Dharssi S, Chen Q, Keenan TD, Agrén E, Wong WT, Chew EY, Lu Z. DeepSeeNet: A Deep Learning Model for Automated
Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology. 2019
Apr;126(4):565-575. doi: 10.1016/j.0phtha.2018.11.015. Epub 2018 Nov 22. PMID: 30471319; PMCID: PMC6435402.

25. GaoY, XiongF, Xiong ], Chen Z, Lin Y, Xia X, Yang Y, Li G, Hu Y. Recent advances in the application of artificial intelligence in age-
related macular degeneration. BMJ] Open Ophthalmol. 2024 Nov 13;9(1):e001903. doi: 10.1136/bmjophth-2024-001903. PMID:
39537399; PMCID: PMC11580293.

26. Coyner AS, Young BK, Ostmo SR, Grigorian F, Ells A, Hubbard B, Rodriguez SH, Rishi P, Miller AM, Bhatt AR, Agarwal-Sinha S,
Sears J, Chan RVP, Chiang MF, Kalpathy-Cramer J, Binenbaum G, Campbell JP. Use of an Artificial Intelligence-Generated Vascular
Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity. Ophthalmology. 2024 Nov;131(11):1290-1296. doi:
10.1016/j.ophtha.2024.06.006. Epub 2024 Jun 10. PMID: 38866367; PMCID: PMC11499038.

27. Al-Khaled T, Valikodath N, Cole E, Bajimaya S, KC S, Chuluunbat T, Jonas K, Chuluunkhuu C, MacKeen LD, Ostmo S, Wu WC.
Evaluation of an artificial intelligence system (i-ROP DL) for retinopathy of prematurity screening in Nepal using the Forus 3nethra
neo and in Mongolia using the Retcam Portable®. Investigative Ophthalmology & Visual Science. 2021 Jun 21;62(8):3269-.
https://iovs.arvojournals.org/article.aspx?articleid=2774086.

28. Ng WY, Zhang S, Wang Z, Ong CJT, Gunasekeran DV, Lim GYS, Zheng F, Tan SCY, Tan GSW, Rim TH, Schmetterer L, Ting DSW.
Updates in deep learning research in ophthalmology. Clin Sci (Lond). 2021 Oct 29;135(20):2357-2376. doi: 10.1042/CS20210207. PMID:
34661658.

29. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer ], Chiang MF;
Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in
Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018 Jul 1;136(7):803-810. doi:
10.1001/jamaophthalmol.2018.1934. PMID: 29801159; PMCID: PMC6136045.

30. Senapati A, Tripathy HK, Sharma V, Gandomi AH. Artificial intelligence for diabetic retinopathy detection: A systematic review.
Informatics in Medicine Unlocked. 2024 Jan 1;45:101445.doi: 10.1016/j.imu.2024.101445.

31. JiY,JiY, LiuY, ZhaoY, Zhang L. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus
images. Front Cell Dev Biol. 2023 Mar 28;11:1168327. doi: 10.3389/fcell.2023.1168327. PMID: 37056999; PMCID: PMC10086262.

32. Kong M, Song S]. Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future.
Endocrinol Metab (Seoul). 2024 Jun;39(3):416-424. doi: 10.3803/EnM.2023.1913. Epub 2024 Jun 10. PMID: 38853435, PMCID:
PMC11220221.

33. Tabuchi H, Engelmann J, Maeda F, Nishikawa R, Nagasawa T, Yamauchi T, Tanabe M, Akada M, Kihara K, Nakae Y, Kiuchi Y,
Bernabeu MO. Using artificial intelligence to improve human performance: efficient retinal disease detection training with synthetic
images. Br ] Ophthalmol. 2024 Sep 20;108(10):1430-1435. doi: 10.1136/bjo-2023-324923. PMID: 38485215, PMCID: PMC11503156.

34. Wang Z, Lim G, Ng WY, Tan TE, Lim ], Lim SH, Foo V, Lim ], Sinisterra LG, Zheng F, Liu N, Tan GSW, Cheng CY, Cheung GCM,
Wong TY, Ting DSW. Synthetic artificial intelligence using generative adversarial network for retinal imaging in detection of age-
related macular degeneration. Front Med (Lausanne). 2023 Jun 22;10:1184892. doi: 10.3389/fmed.2023.1184892. PMID: 37425325;
PMCID: PMC10324667.

35. Sonmez SC, Sevgi M, Antaki F, Huemer ], Keane PA. Generative artificial intelligence in ophthalmology: current innovations, future
applications and challenges. Br ] Ophthalmol. 2024 Sep 20;108(10):1335-1340. doi: 10.1136/bjo-2024-325458. PMID: 38925907; PMCID:
PMC11503064.

36. Ling XC, Chen HS, Yeh PH, Cheng YC, Huang CY, Shen SC, Lee YS. Deep Learning in Glaucoma Detection and Progression
Prediction: A Systematic Review and Meta-Analysis. Biomedicines. 2025 Feb 10;13(2):420. doi: 10.3390/biomedicines13020420. PMID:
40002833; PMCID: PMC11852503.

37. Noury E, Mannil SS, Chang RT, Ran AR, Cheung CY, Thapa SS, Rao HL, Dasari S, Riyazuddin M, Chang D, Nagaraj S, Tham CC,
Zadeh R. Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets. Transl
Vis Sci Technol. 2022 May 2;11(5):11. doi: 10.1167/tvst.11.5.11. PMID: 35551345; PMCID: PMC9145034.

Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1) 268



Artificial intelligence in ophthalmology
., /0 0/ - /e /¥ - ] ¥ ¥ ¥- e ;o o 00— 0 -/ m — eV
38. Hemelings R, Elen B, Barbosa-Breda ], Blaschko MB, De Boever P, Stalmans I. Deep learning on fundus images detects glaucoma

beyond the optic disc. Sci Rep. 2021 Oct 13;11(1):20313. doi: 10.1038/s41598-021-99605-1. Erratum in: Sci Rep. 2023 Dec 5;13(1):21456.
doi: 10.1038/s41598-023-48939-z. PMID: 34645908; PMCID: PMC8514536.

39. Chan EJ], Najjar RP, Tang Z, Milea D. Deep Learning for Retinal Image Quality Assessment of Optic Nerve Head Disorders. Asia Pac
J Ophthalmol (Phila). 2021 May-Jun 01;10(3):282-288. doi: 10.1097/AP0O.0000000000000404. PMID: 34383719.

40. Chiang YY, Chen CL, Chen YH. Deep Learning Evaluation of Glaucoma Detection Using Fundus Photographs in Highly Myopic
Populations. Biomedicines. 2024 Jun 23;12(7):1394. doi: 10.3390/biomedicines12071394. PMID: 39061968; PMCID: PMC11274657.

41. Thompson AC, Falconi A, Sappington RM. Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic
gap on structural imaging. Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. PMID: 38983522;
PMCID: PMC11182271.

42. Medeiros FA, Jammal AA, Thompson AC. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective
Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology. 2019 Apr;126(4):513-521. doi:
10.1016/j.ophtha.2018.12.033. Epub 2018 Dec 20. PMID: 30578810; PMCID: PMC6884092.

43. Sharma P, Takahashi N, Ninomiya T, Sato M, Miya T, Tsuda S, Nakazawa T. A hybrid multi model artificial intelligence approach
for glaucoma screening using fundus images. NPJ Digit Med. 2025 Feb 27;8(1):130. doi: 10.1038/s41746-025-01473-w. PMID: 40016437;
PMCID: PMC11868628.

44. Christopher M, Bowd C, Walker E, Belghith A, Goldbaum MH, Rezapour J, Fazio MA, Girkin CA, De Moraes G, Liebmann JM,
Weinreb RN. Comparison of Deep Learning Glaucoma Detection Using Optic Nerve Head Fundus Photos and Optical Coherence
Tomography. Investigative Ophthalmology & Visual Science. 2022 Jun 1;63(7):2035-A0476.
https://iovs.arvojournals.org/article.aspx?articleid=2780609.

45. Martucci A, Gallo Afflitto G, Pocobelli G, Aiello F, Mancino R, Nucci C. Lights and Shadows on Artificial Intelligence in Glaucoma:
Transforming Screening, Monitoring, and Prognosis. ] Clin Med. 2025 Mar 21;14(7):2139. doi: 10.3390/jcm14072139. PMID: 40217589;
PMCID: PMC11989555.

46. Djulbegovic MB, Bair H, Gonzalez DJT, Ishikawa H, Wollstein G, Schuman JS. Artificial Intelligence for Optical Coherence
Tomography in Glaucoma. Transl Vis Sci Technol. 2025 Jan 2;14(1):27. doi: 10.1167/tvst.14.1.27. PMID: 39854198.

47. Huang X, Islam MR, Akter S, Ahmed F, Kazami E, Serhan HA, Abd-Alrazaq A, Yousefi S. Artificial intelligence in glaucoma:
opportunities, challenges, and future directions. Biomed Eng Online. 2023 Dec 16;22(1):126. doi: 10.1186/512938-023-01187-8. PMID:
38102597, PMCID: PMC10725017.

48. ShiM, LuoY, Tian Y, Shen LQ, Zebardast N, Eslami M, Kazeminasab S, Boland MV, Friedman DS, Pasquale LR, Wang M. Equitable
artificial intelligence for glaucoma screening with fair identity normalization. NPJ Digit Med. 2025 Jan 20;8(1):46. doi: 10.1038/s41746-
025-01432-5. PMID: 39833503; PMCID: PMC11747341.

49. ZhangL, Tang L, Xia M, Cao G. The application of artificial intelligence in glaucoma diagnosis and prediction. Front Cell Dev Biol.
2023 May 4;11:1173094. doi: 10.3389/fcell.2023.1173094. PMID: 37215077; PMCID: PMC10192631.

50. Yarkheir M, Sadeghi M, Azarnoush H, Akbari MR, Khalili Pour E. Automated strabismus detection and classification using deep
learning analysis of facial images. Sci Rep. 2025 Jan 31;15(1):3910. doi: 10.1038/s41598-025-88154-6. PMID: 39890897; PMCID:
PMC11785772.

51. ZhaoZ,MengH, LiS, Wang S, Wang ], Gao S. High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and Al-
Enhanced Ocular Feature Analysis. Biosensors (Basel). 2025 Feb 14;15(2):110. doi: 10.3390/bios15020110. PMID: 39997012; PMCID:
PMC11852461.

52. MaoK, Yang Y, Guo C, Zhu Y, Chen C, Chen ], Liu L, Chen L, Mo Z, Lin B, Zhang X, Li S, Lin X, Lin H. An artificial intelligence
platform for the diagnosis and surgical planning of strabismus using corneal light-reflection photos. Ann Transl Med. 2021
Mar;9(5):374. doi: 10.21037/atm-20-5442. PMID: 33842595, PMCID: PMC8033395.

53. de Figueiredo LA, Dias JVP, Polati M, Carricondo PC, Debert L. Strabismus and Artificial Intelligence App: Optimizing Diagnostic
and Accuracy. Transl Vis Sci Technol. 2021 Jun 1;10(7):22. doi: 10.1167/tvst.10.7.22. PMID: 34137838; PMCID: PMC8212438.

54. Shu Q, Pang J, Liu Z, Liang X, Chen M, Tao Z, Liu Q, Guo Y, Yang X, Ding J, Chen R, Wang S, Li W, Zhai G, Xu ], Li L. Artificial
Intelligence for Early Detection of Pediatric Eye Diseases Using Mobile Photos. JAMA Netw Open. 2024 Aug 1;7(8):e2425124. doi:
10.1001/jamanetworkopen.2024.25124. PMID: 39106068; PMCID: PMC11304122.

55. Wu D, Huang X, Chen L, Hou P, Liu L, Yang G. Integrating artificial intelligence in strabismus management: current research
landscape and future directions. Exp Biol Med (Maywood). 2024 Nov 25;249:10320. doi: 10.3389/ebm.2024.10320. PMID: 39654660;
PMCID: PMC11625544.

56. Mu ], Zhong H, Jiang M. Machine-learning models to predict myopia in children and adolescents. Front Med (Lausanne). 2024 Nov
19;11:1482788. doi: 10.3389/fmed.2024.1482788. PMID: 39629228; PMCID: PMC11613503.

57. QiZ, LiT, Chen], Yam JC, Wen Y, Huang G, Zhong H, He M, Zhu D, Dai R, Qian B, Wang ], Qian C, Wang W, Zheng Y, Zhang J, Yi
X, Wang Z, Zhang B, Liu C, Cheng T, Yang X, Li ], Pan YT, Ding X, Xiong R, Wang Y, Zhou Y, Feng D, Liu S, Du L, Yang ], Zhu Z, Bi
L, Kim J, Tang F, Zhang Y, Zhang X, Zou H, Ang M, Tham CC, Cheung CY, Pang CP, Sheng B, He X, Xu X. A deep learning system
for myopia onset prediction and intervention effectiveness evaluation in children. NPJ Digit Med. 2024 Aug 7;7(1):206. doi:
10.1038/541746-024-01204-7. PMID: 39112566; PMCID: PMC11306751.

58. LiJ,ZengS, LiZ Xu]J, SunZ, Zhao ], LiM, Zou Z, Guan T, Zeng ], Liu Z, Xiao W, Wei R, Miao H, Ziyar I, Huang J, Gao Y, Zeng Y,
Zhou XT, Zhang K. Accurate prediction of myopic progression and high myopia by machine learning. Precis Clin Med. 2024 Mar
4;7(1):pbae005. doi: 10.1093/pcmedi/pbae005. PMID: 38558949; PMCID: PMC10981449.

59. Zhao],YuY,LiY, LiF, Zhang Z, Jian W, Chen Z, Shen Y, Wang X, Ye Z, Huang C, Zhou X. Development and validation of predictive
models for myopia onset and progression using extensive 15-year refractive data in children and adolescents. ] Transl Med. 2024 Mar
17;22(1):289. doi: 10.1186/s12967-024-05075-0. PMID: 38494492; PMCID: PMC10946190.

269 Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1)



Artificial intelligence in ophthalmology
I ——

60. Barraza-Bernal MJ, Ohlendorf A, Sanz Diez P, Feng X, Yang LH, Lu MX, Wahl S, Kratzer T. Prediction of refractive error and its
progression: a machine learning-based algorithm. BMJ Open Ophthalmol. 2023 Oct;8(1):e001298. doi: 10.1136/bmjophth-2023-001298.
PMID: 37793703; PMCID: PMC10551949.

61. LiSM, Ren MY, Gan ], Zhang SG, Kang MT, Li H, Atchison DA, Rozema J, Grzybowski A, Wang N; Anyang Childhood Eye Study
Group. Machine Learning to Determine Risk Factors for Myopia Progression in Primary School Children: The Anyang Childhood
Eye Study. Ophthalmol Ther. 2022 Apr;11(2):573-585. doi: 10.1007/s40123-021-00450-2. Epub 2022 Jan 21. PMID: 35061239; PMCID:
PMC8927561.

62. Zadnik K, Sinnott LT, Cotter SA, Jones-Jordan LA, Kleinstein RN, Manny RE, Twelker JD, Mutti DO; Collaborative Longitudinal
Evaluation of Ethnicity and Refractive Error (CLEERE) Study Group. Prediction of Juvenile-Onset Myopia. JAMA Ophthalmol. 2015
Jun;133(6):683-9. doi: 10.1001/jamaophthalmol.2015.0471. PMID: 25837970; PMCID: PMC4607030.

63. Huang], Ma W, Li R, Zhao N, Zhou T. Myopia prediction for children and adolescents via time-aware deep learning. Sci Rep. 2023
Apr 3;13(1):5430. doi: 10.1038/s41598-023-32367-0. PMID: 37012269; PMCID: PMC10070443.

64. Hao J, Kwapong WR, Shen T, Fu H, Xu Y, Lu Q, Liu S, Zhang J, Liu Y, Zhao Y, Zheng Y, Frangi AF, Zhang S, Qi H, Zhao Y. Early
detection of dementia through retinal imaging and trustworthy AL NPJ Digit Med. 2024 Oct 20;7(1):294. doi: 10.1038/s41746-024-
01292-5. PMID: 39428420; PMCID: PMC11491446.

65. Wang ], Wang YX, Zeng D, Zhu Z, Li D, Liu Y, Sheng B, Grzybowski A, Wong TY. Artificial intelligence-enhanced retinal imaging as
a biomarker for systemic diseases. Theranostics. 2025 Feb 18;15(8):3223-3233. doi: 10.7150/thno.100786. PMID: 40093903; PMCID:
PMC11905132.

66. Yang Q, Bee YM, Lim CC, Sabanayagam C, Yim-Lui Cheung C, Wong TY, Ting DSW, Lim LL, Li H, He M, Lee AY, Shaw A], Keong
YK, Wei Tan GS. Use of artificial intelligence with retinal imaging in screening for diabetes-associated complications: systematic
review. EClinicalMedicine. 2025 Feb 18;81:103089. doi: 10.1016/j.eclinm.2025.103089. PMID: 40052065; PMCID: PMC11883405.

67. Krishnan A, Dutta A, Srivastava A, Konda N, Prakasam RK. Artificial Intelligence in Optometry: Current and Future Perspectives.
Clin Optom (Auckl). 2025 Mar 12;17:83-114. doi: 10.2147/OPT0.5494911. PMID: 40094103; PMCID: PMC11910921.

68. Santos LF, Sanchez-Tena MA, Alvarez-Peregrina C, Sanchez-Gonzalez JM, Martinez-Perez C. The Role of Artificial Intelligence in
Optometric Diagnostics and Research: Deep Learning and Time-Series Forecasting Applications. Technologies. 2025 Feb 12;13(2):77.
doi: 10.3390/technologies13020077.

69. Stuermer L, Braga S, Martin R, Wolffsohn JS. Artificial intelligence virtual assistants in primary eye care practice. Ophthalmic Physiol
Opt. 2025 Mar;45(2):437-449. doi: 10.1111/0po.13435. Epub 2024 Dec 26. PMID: 39723633, PMCID: PMC11823310.

70. Wang J, Yeh TN, Chakraborty R, Yu SX, Lin MC. A Deep Learning Approach for Meibomian Gland Atrophy Evaluation in
Meibography Images. Transl Vis Sci Technol. 2019 Dec 18;8(6):37. doi: 10.1167/tvst.8.6.37. PMID: 31867138; PMCID: PMC6922272.

71. Stegmann H, Werkmeister RM, Pfister M, Garhofer G, Schmetterer L, Dos Santos VA. Deep learning segmentation for optical
coherence tomography measurements of the lower tear meniscus. Biomed Opt Express. 2020 Feb 20;11(3):1539-1554. doi:
10.1364/BOE.386228. PMID: 32206427; PMCID: PMC7075621.

72. Lavric A, Valentin P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput Intell
Neurosci. 2019 Jan 23;2019:8162567. doi: 10.1155/2019/8162567. PMID: 30809255; PMCID: PMC6364125.

73. Kamiya K, Ayatsuka Y, Kato Y, Fujimura F, Takahashi M, Shoji N, Mori Y, Miyata K. Keratoconus detection using deep learning of
colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open. 2019 Sep
27;9(9):e031313. doi: 10.1136/bmjopen-2019-031313. PMID: 31562158; PMCID: PMC6773416.

74. Girard F, Hurtut T, Kavalec C, Cheriet F. Atlas-based score for automatic glaucoma risk stratification. Comput Med Imaging Graph.
2021 Jan;87:101797. doi: 10.1016/j.compmedimag.2020.101797. Epub 2020 Oct 16. PMID: 33307282.

75. Ran AR, Cheung CY, Wang X, Chen H, Luo LY, Chan PP, Wong MOM, Chang RT, Mannil SS, Young AL, Yung HW, Pang CP, Heng
PA, Tham CC. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective
training and validation deep-learning analysis. Lancet Digit Health. 2019 Aug;1(4):e172-e182. doi: 10.1016/52589-7500(19)30085-8.
Epub 2019 Aug 9. PMID: 33323187.

76. Thompson AC, Jammal AA, Medeiros FA. A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc
Photographs. Am ] Ophthalmol. 2019 May;201:9-18. doi: 10.1016/j.aj0.2019.01.011. Epub 2019 Jan 26. PMID: 30689990; PMCID:
PMC6884088.

77.  Vaghefi E, Hill S, Kersten HM, Squirrell D. Multimodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate
Dry Age-Related Macular Degeneration: A Feasibility Study. ] Ophthalmol. 2020 Jan 13;2020:7493419. doi: 10.1155/2020/7493419.
PMID: 32411434; PMCID: PMC7201607.

78. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated Grading of Age-Related Macular Degeneration
From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017 Nov 1;135(11):1170-1176. doi:
10.1001/jamaophthalmol.2017.3782. PMID: 28973096, PMCID: PMC5710387

79. Hanif AM, Beqiri S, Keane PA, Campbell JP. Applications of interpretability in deep learning models for ophthalmology. Curr Opin
Ophthalmol. 2021 Sep 1;32(5):452-458. doi: 10.1097/1CU.0000000000000780. PMID: 34231530; PMCID: PMC8373813.

80. WuY, LiuY, Yang Y, Yao MS, Yang W, Shi X, Yang L, Li D, Liu Y, Yin S, Lei C, Zhang M, Gee JC, Yang X, Wei W, Gu S. A concept-
based interpretable model for the diagnosis of choroid neoplasias using multimodal data. Nat Commun. 2025 Apr 13;16(1):3504. doi:
10.1038/s41467-025-58801-7. PMID: 40223097; PMCID: PMC11994757.

81. Thaler A, Ong J, Al-Aswad LA. Upholding artificial intelligence transparency in ophthalmology: A call for collaboration between
academia, industry, and government for patient care in the 21st century. Asia Pac ] Ophthalmol (Phila). 2024 Jul-Aug;13(4):100093.
doi: 10.1016/j.apjo.2024.100093. Epub 2024 Aug 17. PMID: 39159825.

82. Evans NG, Wenner DM, Cohen IG, Purves D, Chiang MF, Ting DSW, Lee AY. Emerging Ethical Considerations for the Use of
Artificial Intelligence in Ophthalmology. Ophthalmol Sci. 2022 Mar 7;2(2):100141. doi: 10.1016/j.x0ps.2022.100141. PMID: 36249707;
PMCID: PMC9560632.

83. Bleher H, Braun M. Diffused responsibility: attributions of responsibility in the use of Al-driven clinical decision support systems. Al
Ethics. 2022;2(4):747-761. doi: 10.1007/s43681-022-00135-x. Epub 2022 Jan 24. PMID: 35098247, PMCID: PMC8785388.

Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1) 270



Artificial intelligence in ophthalmology
., /0 0/ - /e /¥ - ] ¥ ¥ ¥- e ;o o 00— 0 -/ m — eV
84. Khan Z, Gaidhane AM, Singh M, Ganesan S, Kaur M, Sharma GC, Rani P, Sharma R, Thapliyal S, Kushwaha M, Kumar H, Agarwal

RK, Shabil M, Verma L, Sidhu A, Manan NBA, Bushi G, Mehta R, Sah S, Satapathy P, Samal SK. Diagnostic Accuracy of IDX-DR for
Detecting Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Am ] Ophthalmol. 2025 May;273:192-204. doi:
10.1016/j.aj0.2025.02.022. Epub 2025 Feb 20. PMID: 39986640.

85. Tabuchi H, Ishitobi N, Deguchi H, Nakaniida Y, Tanaka H, Akada M, Tanabe M. Large-scale observational study of Al-based patient
and surgical material verification system in ophthalmology: real-world evaluation in 37 529 cases. BMJ Qual Saf. 2024 Nov 29:bmjqs-
2024-018018. doi: 10.1136/bmjqs-2024-018018. Epub ahead of print. PMID: 39613452.

86. LiZ WangL, WuX, Jiang ], Qiang W, Xie H, Zhou H, Wu S, Shao Y, Chen W. Artificial intelligence in ophthalmology: The path to
the real-world clinic. Cell Rep Med. 2023 Jul 18;4(7):101095. doi: 10.1016/j.xcrm.2023.101095. Epub 2023 Jun 28. PMID: 37385253;
PMCID: PMC10394169.

87. Hussain AK, Kakakhel MM, Ashraf MF, Shahab M, Ahmad F, Lugman F, Ahmad M, Mohammed Nour A, Varrassi G, Kinger S.
Innovative Approaches to Safe Surgery: A Narrative Synthesis of Best Practices. Cureus. 2023 Nov 30;15(11):e49723. doi:
10.7759/cureus.49723. PMID: 38161861; PMCID: PMC10757557.

88. Yu X, Wang Z, Wu ], Weng D. Artificial intelligence-based perioperative safety verification system improved the performance of
surgical safety verification execution. Am ] Transl Res. 2024 Apr 15;16(4):1295-1305. doi: 10.62347/PUUT2092. PMID: 38715820;
PMCID: PMC11070349.

89. Kanagasingam Y, Xiao D, Vignarajan ], Preetham A, Tay-Kearney ML, Mehrotra A. Evaluation of Artificial Intelligence-Based
Grading of Diabetic Retinopathy in Primary Care. JAMA Netw Open. 2018 Sep 7;1(5):e182665. doi:
10.1001/jamanetworkopen.2018.2665. PMID: 30646178; PMCID: PMC6324474.

90. Lawton T, Morgan P, Porter Z, Hickey S, Cunningham A, Hughes N, Iacovides I, Jia Y, Sharma V, Habli I. Clinicians risk becoming
Tiability sinks' for artificial intelligence. Future Healthc J. 2024 Feb 19;11(1):100007. doi: 10.1016/j.thj.2024.100007. PMID: 38646041;
PMCID: PMC11025047.

91. Goktas P, Grzybowski A. Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy Al J Clin Med.
2025 Feb 27;14(5):1605. doi: 10.3390/jcm14051605. PMID: 40095575; PMCID: PMC11900311.

92. Albahri AS, Duhaim AM, Fadhel MA, Alnoor A, Bager NS, Alzubaidi L, Albahri OS, Alamoodi AH, Bai ], Salhi A, Santamaria J. A
systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion.
Information Fusion. 2023 Aug 1;96:156-91. doi: 10.1016/j.inffus.2023.03.008.

93. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of Al technologies in healthcare: A narrative
review. Heliyon. 2024 Feb 15;10(4):e26297. doi: 10.1016/j.heliyon.2024.e26297. PMID: 38384518; PMCID: PMC10879008.

94. Cestonaro C, Delicati A, Marcante B, Caenazzo L, Tozzo P. Defining medical liability when artificial intelligence is applied on
diagnostic algorithms: a systematic review. Front Med (Lausanne). 2023 Nov 27;10:1305756. doi: 10.3389/fmed.2023.1305756. PMID:
38089864; PMCID: PMC10711067.

95. Arjomandi Rad A, Vardanyan R, Athanasiou T, Maessen ], Sardari Nia P. The ethical considerations of integrating artificial
intelligence into surgery: a review. Interdiscip Cardiovasc Thorac Surg. 2025 Mar 5;40(3):ivae192. doi: 10.1093/icvts/ivae192. PMID:
39999009; PMCID: PMC11904299.

96. Burlina P, Joshi N, Paul W, Pacheco KD, Bressler NM. Addressing Artificial Intelligence Bias in Retinal Diagnostics. Transl Vis Sci
Technol. 2021 Feb 5;10(2):13. doi: 10.1167/tvst.10.2.13. PMID: 34003898; PMCID: PMC7884292.

97. Rao DP, Savoy FM, Sivaraman A, Dutt S, Shahsuvaryan M, Jrbashyan N, Hambardzumyan N, Yeghiazaryan N, Das T. Evaluation of
an Al algorithm trained on an ethnically diverse dataset to screen a previously unseen population for diabetic retinopathy. Indian J
Ophthalmol. 2024 Aug 1;72(8):1162-1167. doi: 10.4103/1JO.[JO_2151_23. Epub 2024 Jul 29. PMID: 39078960; PMCID: PMC11451790.

98. Rajesh AE, Olvera-Barrios A, Warwick AN, Wu Y, Stuart KV, Biradar MI, Ung CY, Khawaja AP, Luben R, Foster PJ, Cleland CR,
Makupa WU, Denniston AK, Burton M], Bastawrous A, Keane PA, Chia MA, Turner AW, Lee CS, Tufail A, Lee AY, Egan C; UK
Biobank Eye and Vision Consortium. Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is
not biology. Nat Commun. 2025 Jan 2;16(1):60. doi: 10.1038/s41467-024-55198-7. PMID: 39746957; PMCID: PMC11696055.

99. Haripriya R, Khare N, Pandey M. Privacy-preserving federated learning for collaborative medical data mining in multi-institutional
settings. Sci Rep. 2025 Apr 11;15(1):12482. doi: 10.1038/s41598-025-97565-4. PMID: 40217112; PMCID: PMC11992079.

100. Rajesh AE, Olvera-Barrios A, Warwick AN, Wu Y, Stuart KV, Biradar M, Ung CY, Khawaja AP, Luben R, Foster PJ, Lee CS, Tufail A,
Lee AY, Egan C; EPIC Norfolk, UK Biobank Eye and Vision Consortium. Ethnicity is not biology: retinal pigment score to evaluate
biological variability from ophthalmic imaging using machine learning. medRxiv. 2023 Jul 6:2023.06.28.23291873. doi:
10.1101/2023.06.28.23291873. Update in: Nat Commun. 2025 Jan 2;16(1):60. doi: 10.1038/s41467-024-55198-7. PMID: 37461664; PMCID:
PMC10350142.

101. Alderman JE, Palmer J, Laws E, McCradden MD, Ordish ], Ghassemi M, Pfohl SR, Rostamzadeh N, Cole-Lewis H, Glocker B, Calvert
M, Pollard TJ, Gill ], Gath J, Adebajo A, Beng J, Leung CH, Kuku S, Farmer LA, Matin RN, Mateen BA, McKay F, Heller K,
Karthikesalingam A, Treanor D, Mackintosh M, Oakden-Rayner L, Pearson R, Manrai AK, Myles P, Kumuthini ], Kapacee Z, Sebire
NJ, Nazer LH, Seah ], Akbari A, Berman L, Gichoya JW, Righetto L, Samuel D, Wasswa W, Charalambides M, Arora A, Pujari S,
Summers C, Sapey E, Wilkinson S, Thakker V, Denniston A, Liu X. Tackling algorithmic bias and promoting transparency in health
datasets: the STANDING Together consensus recommendations. Lancet Digit Health. 2025 Jan;7(1):e64-e88. doi: 10.1016/52589-
7500(24)00224-3. Epub 2024 Dec 18. PMID: 39701919; PMCID: PMC11668905.

102. Foote HP, Hong C, Anwar M, Borentain M, Bugin K, Dreyer N, Fessel ], Goyal N, Hanger M, Hernandez AF, Hornik CP, Jackman
JG, Lindsay AC, Matheny ME, Ozer K, Seidel ], Stockbridge N, Embi PJ, Lindsell CJ. Embracing Generative Artificial Intelligence in
Clinical Research and Beyond: Opportunities, Challenges, and Solutions. JACC Adv. 2025 Mar;4(3):101593. doi:
10.1016/j,jacadv.2025.101593. Epub 2025 Feb 8. PMID: 39923329; PMCID: PMC11850149.

103. Nakayama LF, de Matos JCRG, Stewart IU, Mitchell WG, Martinez-Martin N, Regatieri CVS, Celi LA. Retinal Scans and Data Sharing;:
The Privacy and Scientific Development Equilibrium. Mayo Clin Proc Digit Health. 2023 Mar 25;1(2):67-74. doi:
10.1016/j.mcpdig.2023.02.003. PMID: 40206726, PMCID: PMC11975763.

271 Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1)



Artificial intelligence in ophthalmology
_——e ¥ -7 e b .. , .. ... ........o.....vo..pv;-oonm

104. Tom E, Keane PA, Blazes M, Pasquale LR, Chiang MF, Lee AY, Lee CS; AAO Artificial Intelligence Task Force. Protecting Data Privacy
in the Age of Al-Enabled Ophthalmology. Transl Vis Sci Technol. 2020 Jul 6;9(2):36. doi: 10.1167/tvst.9.2.36. PMID: 32855840 American
Academy of Ophthalmology Board of Trustees. Electronic address: flum@aao.org. Special Commentary: Balancing Benefits and Risks:
The Case for Retinal Images to Be Considered as Nonprotected Health Information for Research Purposes. Ophthalmology. 2025
Jan;132(1):115-118. doi: 10.1016/j.ophtha.2024.07.031. Epub 2024 Aug 9. PMID: 39127409.

105. Zibran MF. Eye based authentication: Iris and retina recognition. Department of Computer Science, The University of
Saskatchewan, Canada. 2009;7. Report number: 2011-04. doi:10.13140/RG.2.2.13275.23841

106. Zaidan E, Ibrahim IA. Al governance in a complex and rapidly changing regulatory landscape: A global perspective. Humanities and
Social Sciences Communications. 2024 Sep 1;11(1):1-8. doi: 10.1057/s41599-024-03560-x.

107. Sigwart M, Borkowski M, Peise M, Schulte S, Tai S. A secure and extensible blockchain-based data provenance framework for the
Internet of Things. Personal and Ubiquitous Computing. 2020 Jun 16:1-5. doi: 10.1007/s00779-020-01417-z

108. Goncharov L, Suominen H, Cook M. Dynamic consent and personalised medicine. Med ] Aust. 2022 Jun 20;216(11):547-549. doi:
10.5694/mja2.51555. Epub 2022 May 24. PMID: 35611469; PMCID: PMC9544476.

109. Ursin F, Timmermann C, Orzechowski M, Steger F. Diagnosing Diabetic Retinopathy With Artificial Intelligence: What Information
Should Be Included to Ensure Ethical Informed Consent? Front Med (Lausanne). 2021 Jul 21;8:695217. doi: 10.3389/fmed.2021.695217.
PMID: 34368192; PMCID: PMC8333706.

110. Cross JL, Choma MA, Onofrey JA. Bias in medical Al: Implications for clinical decision-making. PLOS Digit Health. 2024 Nov
7;3(11):e0000651. doi: 10.1371/journal.pdig.0000651. PMID: 39509461; PMCID: PMC11542778.

111. CohenIG, Slottje A. Artificial intelligence and the law of informed consent. In: Solaiman B, Cohen IG, editors. Research Handbook on
Health, Al and the Law. Cheltenham, UK: Edward Elgar Publishing Ltd; 2024 Jul 16. Chapter 10. PMID: 40245217.

112. Kiseleva A, Kotzinos D, De Hert P. Transparency of Al in Healthcare as a Multilayered System of Accountabilities: Between Legal
Requirements and Technical Limitations. Front Artif Intell. 2022 May 30;5:879603. doi: 10.3389/frai.2022.879603. PMID: 35707765;
PMCID: PMC9189302.

113. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;695:536-540. doi: 10.1016/j.metabol.2017.01.011. Epub
2017 Jan 11. PMID: 28126242.

114. Stedle K, Flage R, Guikema S, Aven T. Artificial intelligence for risk analysis-A risk characterization perspective on advances,
opportunities, and limitations. Risk Anal. 2025 Apr;45(4):738-751. doi: 10.1111/risa.14307. Epub 2024 Apr 10. PMID: 38600041; PMCID:
PMC12032382.

115. Huang]JJ, Channa R, Wolf RM, Dong Y, Liang M, Wang J, Abramoff MD, Liu TYA. Autonomous artificial intelligence for diabetic eye
disease increases access and health equity in underserved populations. NPJ Digit Med. 2024 Jul 22,7(1):196. doi: 10.1038/s41746-024-
01197-3. Erratum in: NP] Digit Med. 2024 Aug 23;7(1):220. doi: 10.1038/s41746-024-01229-y. PMID: 39039218; PMCID: PMC11263546.

116. Hasanzadeh F, Josephson CB, Waters G, Adedinsewo D, Azizi Z, White JA. Bias recognition and mitigation strategies in artificial
intelligence healthcare applications. NP] Digit Med. 2025 Mar 11;8(1):154. doi: 10.1038/s41746-025-01503-7. PMID: 40069303

117. Anitha S, Priyanka S. Smart phone based automated diabetic retinopathy detection system. Measurement: Sensors. 2024 Feb
1;31:100957. doi: 10.1016/j.measen.2023.100957.

118. Ma R, Cheng Q, Yao ], Peng Z, Yan M, Lu ], Liao J, Tian L, Shu W, Zhang Y, Wang ], Jiang P, Xia W, Li X, Gan L, Zhao Y, Zhu ], Qin
B, Jiang Q, Wang X, Lin X, Chen H, Zhu W, Xiang D, Nie B, Wang J, Guo ], Xue K, Cui H, Cheng J, Zhu X, Hong ], Shi F, Zhang R,
Chen X, Zhao C. Multimodal machine learning enables Al chatbot to diagnose ophthalmic diseases and provide high-quality medical
responses. NP] Digit Med. 2025 Jan 27;8(1):64. doi: 10.1038/s41746-025-01461-0. PMID: 39870855; PMCID: PMC11772878.

119. Phipps B, Hadoux X, Sheng B, Campbell JP, Liu TYA, Keane PA, Cheung CY, Chung TY, Wong TY, van Wijngaarden P. Al image
generation technology in ophthalmology: Use, misuse and future applications. Prog Retin Eye Res. 2025 Mar 17;106:101353. doi:
10.1016/j.preteyeres.2025.101353. Epub ahead of print. PMID: 40107410.

120. Wang S, He X, Jian Z, Li ], Xu C, Chen Y, Liu Y, Chen H, Huang C, Hu J, Liu Z. Advances and prospects of multi-modal ophthalmic
artificial intelligence based on deep learning: a review. Eye Vis (Lond). 2024 Oct 1;11(1):38. doi: 10.1186/s40662-024-00405-1. PMID:
39350240; PMCID: PMC11443922.

121. Sorin V, Kapelushnik N, Hecht I, Zloto O, Glicksberg BS, Bufman H, Livne A, Barash Y, Nadkarni GN, Klang E. Integrated visual and
text-based analysis of ophthalmology clinical cases using a large language model. Sci Rep. 2025 Feb 10;15(1):4999. doi: 10.1038/s41598-
025-88948-8. PMID: 39930078; PMCID: PMC11811221.

122. Lu Z. Multimodal large language models in vision and ophthalmology. Investigative Ophthalmology & Visual Science. 2024 Jun
17,65(7):3876-. https://iovs.arvojournals.org/article.aspx?articleid=2797769

123. Loftus TJ, Ruppert MM, Shickel B, Ozrazgat-Baslanti T, Balch JA, Efron PA, Upchurch GR Jr, Rashidi P, Tignanelli C, Bian ], Bihorac
A.Federated learning for preserving data privacy in collaborative healthcare research. Digit Health. 2022 Oct 27;8:20552076221134455.
doi: 10.1177/20552076221134455. PMID: 36325438; PMCID: PMC9619858.

124. Casals-Farre O, Baskaran R, Singh A, Kaur H, Ul Hoque T, de Almeida A, Coffey M, Hassoulas A. Assessing ChatGPT 4.0's
Capabilities in the United Kingdom Medical Licensing Examination (UKMLA): A Robust Categorical Analysis. Sci Rep. 2025 Apr
15;15(1):13031. doi: 10.1038/s41598-025-97327-2. PMID: 40234701; PMCID: PMC12000555.

125. Ullah F, He ], Zhu N, Wajahat A, Nazir A, Qureshi S, Pathan MS, Dev S. Blockchain-enabled EHR access auditing: Enhancing
healthcare data security. Heliyon. 2024 Aug 10;10(16):e34407. doi: 10.1016/j.heliyon.2024.e34407. PMID: 39253236.

126. Bathula A, Gupta SK, Merugu S, Saba L, Khanna NN, Laird JR, Sanagala SS, Singh R, Garg D, Fouda MM, Suri JS. Blockchain, artificial
intelligence, and healthcare: the tripod of future—a narrative review. Artificial Intelligence Review. 2024 Aug 8;57(9):238. doi:
10.1007/s10462-024-10873-5.

127. Bathula A, Gupta SK, Merugu S, Saba L, Khanna NN, Laird JR, Sanagala SS, Singh R, Garg D, Fouda MM, Suri JS. Blockchain, artificial
intelligence, and healthcare: the tripod of future—a narrative review. Artificial Intelligence Review. 2024 Aug 8;57(9):238. doi:
10.1007/s10462-024-10873-5.

Med Hypothesis Discov Innov Ophthalmol. 2025; 14(1) 272



	ABSTRACT
	KEYWORDS
	INTRODUCTION
	METHODS
	RESULTS and DISCUSSION
	CONCLUSIONS
	ETHICAL DECLARATIONS
	Ethical approval
	Conflict of interest

	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

