

Original Article

Visual impairment and blindness in diabetic retinopathy

Janitha Plackal Avyappan ¹, Zoelfigar Dafalla Mohamed ¹, Gopi Suresh Vankudre ¹ and Galal Mohamed Ismail ¹

¹ Department of Optometry, College of Health Sciences, University of Buraimi, Al Buraimi, Sultanate of Oman

ABSTRACT

Background: Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus (DM) and a leading cause of preventable visual impairment (VI) and blindness worldwide. The rising global prevalence of DM, particularly in low- and middle-income regions such as the Middle East, necessitates the collection of localized data on DR-related VI. Despite growing public health concerns, limited research has been conducted in the Gulf region, including Oman. This study aimed to assess the prevalence and severity of VI associated with DR and identify its key risk factors among patients with types I and II DM in Al Buraimi, Sultanate of Oman.

Methods: A retrospective cross-sectional study was conducted at Buraimi Hospital and Polyclinic in Oman between June 2023 and January 2024. Medical records of patients with type I or II DM and a confirmed diagnosis of DR were reviewed. Best-corrected distance visual acuity was assessed using a Snellen chart, and fundus examinations were performed using both direct and indirect ophthalmoscopy for DR detection and staging. VI was classified according to the WHO criteria. Relevant demographic and clinical data, including age, duration of DM, and duration of DR, were extracted. Coexisting ocular conditions were also documented.

Results: A total of 218 participants were included, with a mean age of 57.5 years; 52.3% (n = 114) were male and 47.7% (n = 104) female. Most participants had no VI (n = 131, 60.1%), whereas mild VI (n = 58, 26.6%) was the most frequent type of VI. A significant association was detected between DR severity and VI levels (P < 0.01); blindness occurred only in patients with severe nonproliferative DR (n = 1) and proliferative DR (n = 8). Age and DR duration were significantly associated with increasing VI severity (both P < 0.05), with each additional year increasing the odds by 4% and 12%, respectively. No significant association was observed between DM duration and VI severity (P > 0.05). Cataract (n = 131) was the most common coexisting ocular condition.

Conclusions: The frequency of VI among patients with DR was relatively high, and its severity was significantly associated with older age and longer DR duration. Blindness occurred only in more severe DR stages, reinforcing the value of early screening and immediate care in mitigating disease severity. These findings indicate the need to optimize resources for early DR management and to promote screening, even in diabetic individuals with normal vision, to prevent disease progression and reduce visual disability. Further community-based research is needed to achieve a robust, practical understanding of the preventable causes of VI, guide national eye health policies, and enhance long-term patient outcomes.

KEYWORDS

diabetic complication, diabetes mellitus, diabetic retinopathies, microaneurysms, low vision, visual impairment, logistic regression, risk factor, odds ratios

Correspondence: Zoelfigar Dafalla Mohamed, Department of Optometry, College of Health Sciences, University of Buraimi, Al Buraimi, Sultanate of Oman. Email: abumihad2010@gmail.com, ORCID iD: https://orcid.org/0000-0001-9197-4748

How to cite this article: Ayyappan JP, Mohamed ZD, Vankudre GS, Ismail GM. Visual impairment and blindness in diabetic retinopathy. Med Hypothesis Discov Innov Ophthalmol. 2025 Summer; 14(2): 9-16. https://doi.org/10.51329/mehdiophthal1519

Received: 08 February 2025; Accepted: 11 July 2025

Copyright © Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.

INTRODUCTION

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and remains one of the leading causes of preventable visual impairment (VI) and blindness worldwide [1-4]. Chronic hyperglycemia in patients with DM triggers a cascade of metabolic, inflammatory, and vascular changes in the retina, culminating in vision loss [3]. DR is broadly categorized into nonproliferative DR (NPDR) and proliferative DR (PDR), and its progression correlates with an increased risk of visual disability: timely screening and management are essential to mitigate its impact on vision and quality of life [3].

The global burden of DM is escalating. The International Diabetes Federation (IDF) reported 536.6 million people living with DM in 2021, with projections reaching 783.2 million by 2045 [5, 6]. The vast majority reside in low- and middle-income countries [7], where access to screening and treatment remains limited. The Middle East and North Africa (MENA) region accounts for approximately 73 million cases, a number expected to rise to 135.7 million by 2045. In Oman, the current prevalence of DM is estimated to be 11.8%, with increasing life expectancy contributing to a growing number of individuals at risk of DR [8-10].

Prevalence estimates of DR vary widely depending on the geographic region, screening method, and population characteristics. The global prevalence is approximately 34.6% of diabetic patients, with rates ranging from 19.1% in newly diagnosed patients in the UK to over 40% in the USA [10-14]. In Oman, existing studies have shown DR prevalence between 14.5% and 42.2% [15, 16]. The neighboring Gulf countries report similarly high rates, implying a shared regional public health concern [17-22].

DR remains the leading cause of VI and blindness in the working-age population. Global estimates suggest that DR-related VI affects approximately 1.4% and blindness affects 2.5% of individuals with DM [23]. Although numerous studies have addressed DR and its complications in Western populations [24, 25], there is a paucity of research focusing on DR-related VI and its associated risk factors in the Gulf Cooperation Council (GCC) region.

Given this gap, the present study aimed to assess the prevalence of DR-associated VI and to identify its related risk factors among patients with type I or II DM attending Buraimi Hospital and Polyclinic in Al Buraimi Governorate, Sultanate of Oman.

METHODS

This retrospective, cross-sectional, hospital-based study was conducted at the Ophthalmology Department of Buraimi Hospital and Polyclinic, located in the Al Buraimi Governorate, Sultanate of Oman, between June 2023 and January 2024. The study population included all patients diagnosed with type I or II DM along with DR and who attended the outpatient services at these centers during the study period.

This study was approved by the Research Ethics Committee of the University of Buraimi (Ref. No. AY22-23COHS-R11) and the Research Ethical Review and Approval Committee, Ministry of Health, Al Buraimi Governorate (Ref. No. MoH/CSR/23/26671). Written informed consent was obtained from all participants, and the study adhered to the ethical standards of the Declaration of Helsinki.

The inclusion criteria were age >18 years and a diagnosis of type I or II DM and any stage of DR. Patients with coexisting ocular pathologies such as cataracts, glaucoma, retinal detachment, or refractive errors were included based on the World Health Organization (WHO) VI classification [26]. We excluded patients aged <18 years, non-diabetic individuals, and those with cognitive or systemic conditions (e.g., Alzheimer's disease, dementia) that impeded participation.

Medical records of eligible patients were examined, and relevant demographic and clinical data were collected. All participants underwent a comprehensive ophthalmic evaluation, including best-corrected distance visual acuity (BCDVA) using a Snellen chart (Keeler Pro Chart, Keeler, UK) administered by trained optometrists. Visual acuity (VA) was recorded for each eye separately, unaided, with correction, and with a pinhole, at both distance and near.

Retinal examinations were performed using direct and indirect ophthalmoscopy. Direct ophthalmoscopy (Heine Beta 200 ophthalmoscope; Heine Optotechnik GmbH & Co., Gilching, Germany) enabled detailed visualization of the posterior pole, including the optic disc and macula. Indirect ophthalmoscopy was performed using a slit-lamp biomicroscope with a condensing lens (Haag-Streit BX 900 slit-lamp; Koeniz, Switzerland) to

assess peripheral retinal changes such as neovascularization, hemorrhage, or retinal detachment. DR staging followed the International Clinical Disease Severity Scale for DR [27, 28].

VI and blindness were classified according to the WHO criteria: VI was defined as presenting VA in the better-seeing eye between <20/60 and $\ge20/400$, and blindness as VA <20/400. Further, VI was subclassified as mild (20/40 to 20/60), moderate (20/80 to 20/160), and severe ($\le20/200$) [26]. DM duration was defined as the time elapsed from the initial diagnosis of DM by a healthcare professional until the date of the first DR screening [29].

To ensure data reliability, the data collection tools were reviewed for content validity by senior clinical experts, and a pretest was conducted on 5% of the sample. Revisions were made accordingly. The principal investigators continuously supervised the data collection to maintain consistency and accuracy.

Data were analyzed using IBM SPSS Statistics for Windows (version 27.0; IBM Corp., Armonk, NY, USA). Descriptive statistics are used to summarize the demographic and clinical characteristics. The normality of continuous data distributions was assessed using the Shapiro–Wilk test. Categorical variables are presented as frequencies and percentages, whereas continuous variables are reported as means with standard deviations (SDs). Associations between the variables were tested using the chi-square test. Ordinal logistic regression analysis was performed to examine the associations between the independent variables (age, DM duration, and DR duration) and the ordinal dependent variable (VI stratified into four levels). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of the associations. A *P*-value less than 0.05 was considered statistically significant.

RESULTS

A total of 218 participants with a mean (SD) age of 57.5 (12.3) years (range, 26–89 years) were included, of whom 52.3% (n = 114) were male and 47.7% (n = 104) were female. The mean (SD) durations of DM and DR were 17.2 (7.0) years (range, 1–41 years) and 5.2 (3.5) years (range, 1–20 years), respectively. The distribution of DR severities among the participants was as follows: mild NPDR, 27.5% (n = 60); moderate NPDR, 13.8% (n = 30); severe NPDR, 11.9% (n = 26); and PDR, 46.8% (n = 102).

Table 1 summarizes the distribution of VI levels among the study participants with types I and II DM. Most individuals had no VI (n = 131, 60.1%), and mild VI was the most frequently observed across all participants (n = 58, 26.6%) and within each type of DM (type I, n = 4 [16.7%]; type II, n= 54 [27.8%]). Blindness was the least common condition among all participants (n = 9, 4.1%) and among those with type II DM (n = 9, 4.6%), whereas moderate VI and blindness were not observed among participants with type I DM. There was no statistically significant difference in the distribution of VI levels between individuals with type I and type II DM (P > 0.05) (Table 1).

Table 2 summarizes the frequencies of coexisting ocular conditions observed in the overall study sample and across different levels of VI. Among the 218 participants, 122 (56.0%) had cataract alone, 6 (2.6%) had both cataract and refractive error, 2 (0.9%) had cataract with glaucoma, 18 (8.3%) had refractive error alone, 6 (2.8%) had glaucoma alone, and 62 (28.4%) had no associated ocular conditions.

Table 3 summarizes the distribution of VI levels across different severities of DR. A statistically significant association was observed between DR severity and VI level (P < 0.01). Most participants within each DR stage, and across the total sample, had no VI. Mild VI was the most frequently observed level across all severities of DR and in the overall cohort. In contrast, blindness was the least common condition, occurring only in individuals with severe NPDR or PDR. However, severe VI and blindness were not observed in patients with mild or moderate NPDR (Table 3).

Table 4 summarizes the results of ordinal logistic regression analysis examining the associations of age, duration of DM, and duration of DR with VI level. Greater age was significantly associated with an increased severity of VI (P < 0.05), with an OR of 1.04, indicating that each additional year of age is associated with a 4% increase in the odds of progression to more severe VI. Similarly, DR duration was significantly associated with VI severity (P < 0.05), with an OR of 1.12, suggesting that each additional year of DR increases the odds of more severe VI by 12%. In contrast, no significant association was detected between DM duration and VI severity (P > 0.05) (Table 4).

Table 1. Visual impairment in participants with type I or II DM

Level of VI	Type I DM	Type II DM	P-value	Total
No VI, n (%)	18 (75.0)	113 (58.3)	0.343	131 (60.1)
Mild VI, n (%)	4 (16.7)	54 (27.8)		58 (26.6)
Moderate VI, n (%)	0 (0.0)	8 (4.1)		8 (3.7)
Severe VI, n (%)	2 (8.3)	10 (5.2)		12 (5.5)
Blindness, n (%)	0 (0.0)	9 (4.6)		9 (4.1)
Total, n (%)	24 (100.0)	194 (100.0)		218 (100.0)

Abbreviations: DM, diabetes mellitus; VI, visual impairment; n, number of participants; %, percentage

Table 2. Coexisting ocular conditions according to level of VI

	Level of VI						
Associated ocular condition	No VI	Mild VI	Moderate VI	Severe VI	Blindness	Total	
Cataract alone, n (%)	71 (54.2)	28 (48.3)	8 (100.0)	8 (66.7)	7 (77.8)	122 (56.0)	
Cataract and refractive error, n (%)	0 (0.0)	5 (8.6)	0 (0.0)	1 (8.3)	0 (0.0)	6 (2.8)	
Cataract and glaucoma, n (%)	1 (0.8)	0 (0.0)	0 (0.0)	0 (0.0)	1 (11.1)	2 (0.9)	
Cataract and others, n (%)	0 (0.0)	1 (1.7)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.5)	
Refractive error, n (%)	12 (9.2)	5 (8.6)	0 (0.0)	1 (8.3)	0 (0.0)	18 (8.3)	
Glaucoma, n (%)	5 (3.8)	1 (1.7)	0 (0.0)	0 (0.0)	0 (0.0)	6 (2.8)	
Other, n (%)	1 (0.8)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.5)	
None, n (%)	41 (31.3)	18 (31.0)	0 (0.0)	2 (16.7)	1 (11.1)	62 (28.4)	
Total, n (%)	131 (100.0)	58 (100.0)	8 (100.0)	12 (100.0)	9 (100.0)	218 (100.0)	

Abbreviations: VI, visual impairment; n, number of participants; %, percentage.

Table 3. Distribution of VI levels across the different severities of DR

				Level of VI			P-value	
Variable		No VI	Mild VI	Moderate VI	Severe VI	Blindness		Total
Severity	Mild NPDR	50 (38.2)	9 (15.5)	1 (12.5)	0 (0.0)	0 (0.0)	0.001	60 (27.5)
of DR	Moderate	17 (13.0)	11 (19.0)	2 (25.0)	0 (0.0)	0 (0.0)		30 (13.8)
	NPDR							
	Severe NPDR	17 (13.0)	6 (10.3)	0 (0.0)	2 (16.7)	1 (11.1)		26 (11.9)
	PDR	47 (35.9)	32 (55.2)	5 (62.5)	10 (83.3)	8 (88.9)		102
								(46.8)
Total		131 (100.0)	58 (100.0)	8 (100.0)	12 (100.0)	9 (100.0)		218
								(100.0)

Abbreviations: VI, visual impairment; DR, diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; n, number of participants; %, percentage. Note: *P*-value < 0.05 is shown in bold.

Table 4. Associations of age, DM duration, and DR duration with VI level

Variable		OR	<i>P</i> -value	95% CI
Threshold values for different levels of VI	No VI	-	< 0.001	1.79 – 4.65
	Mild VI	-	< 0.001	3.28 – 6.30
	Moderate VI	-	< 0.001	3.64 – 6.71
	Severe VI	-	< 0.001	4.50 – 7.75
Impact of each independent variable on VI	Age	1.04	0.003	0.02 - 0.07
	DM Duration	0.99	0.657	- 0.06 – 0.04
	DR Duration	1.12	0.012	0.02 - 0.20

Abbreviations: DM, diabetes mellitus; DR, diabetic retinopathy; VI, visual impairment; OR, odds ratio; CI, confidence interval. Note: *P*-value < 0.05 are shown in bold.

DISCUSSION

This study identified significant associations of increasing age and longer DR duration with higher severity of VI in patients with DM. Most VI was mild, whereas blindness was relatively rare. No significant difference in VI severity was detected between patients with type I and type II DM, and DR severity was significantly associated with poorer visual outcomes.

Perez-Peralta et al. [30] conducted a hospital-based, cross-sectional study to estimate the prevalence of VI in patients with type II DM. Among the 840 participants, 30% had some degree of VI, and 62% had DR, including 30% with sight-threatening DR and 17% with referable diabetic macular edema. Moderate or worse VI was significantly associated with sight-threatening DR (OR = 9.02), referable diabetic macular edema (OR = 5.89), and cataract (OR = 2.51) [30]. In contrast, our study reported frequencies of 26.6% (n = 58) for mild VI, 3.7% (n = 8) for moderate VI, 5.5% (n = 12) for severe VI, and 4.1% (n = 9) for blindness. The overall VI frequency in our cohort (87 of 218 patients, 39.9%) was slightly higher than that reported by Perez-Peralta et al. [30], which may be attributed to our inclusion of patients with both type I and type II DM and the selection of individuals with DR.

Khandekar et al. [29] conducted a nationwide assessment of DR in Oman and reported a DR prevalence of 14.39% among 5564 registered patients with DM, with higher rates observed in male participants (18.46%) than in female participants (10.2%) and in individuals aged 60–69 years (22.87%). The rates of background DR, PDR, and diabetic maculopathy were 8.65%, 2.66%, and 5.12%, respectively. DR was significantly more common in patients with a longer duration of DM, poorer glycemic control (HbA1c >9%), and comorbidities such as hypertension, nephropathy, and neuropathy. Only 20% of patients for whom laser treatment was recommended had undergone the procedure, highlighting gaps in care [29]. In our study, a significant association was observed between DR duration and VI severity but not between DM duration itself and VI severity. This suggests that the duration of DR may play a more important role in vision loss than the overall duration of DM [29]. Further studies with comparable populations are required to clarify this relationship.

In this study, among individuals with type I DM, most (n = 18;75%) exhibited no VI, 16.7% (n = 4) had mild VI, and 8.3% (n = 2) had severe VI; however, no cases of moderate VI or blindness were observed. In contrast, among those with type II DM, 58.3% (n = 113) had no VI, 27.8% (n = 54) had mild VI, 4.1% (n = 8) had moderate VI, and 5.2% (n = 10) had severe VI. Additionally, blindness was documented in 4.6% (n = 9) of participants with type II DM. VI was more common among patients with type II DM, which may reflect the rising burden of type II DM in Oman [31], necessitating proactive public health strategies to prevent type II DM and its ocular complications.

Cataract surgery may exacerbate DR progression [32, 33]. Ocular comorbidities associated with DR in this study included cataract, refractive error, glaucoma, and retinal detachment. Among these, cataract alone or coexisting with other ocular conditions was the most frequently observed comorbidity, with DR detected in 131 (60.1%) individuals. In our cohort, VI attributed solely to cataract was identified in 122 (56.0%) patients. Additionally, 6 patients (2.8%) had cataract and refractive error, 2 (0.9%) had cataract and glaucoma, 18 (8.3%) had refractive error alone, and 6 (2.8%) had glaucoma alone. The frequencies of VI in this study were as follows: mild VI in 58 patients (26.6%), moderate VI in 8 (3.7%), and severe VI in 12 (5.5%). The frequency of blindness was 4.1% (n = 9). Regarding DR severity, 60 (27.5%) participants had mild NPDR, 30 (13.8%) had moderate NPDR, 26 (11.9%) had severe NPDR, and 102 (46.8%) had PDR. Moreover, VI severity was more pronounced among patients with PDR, indicating a substantial visual burden of advanced DR in the Omani population. A retrospective study by Harb et al. [34] conducted at the Clinique du Levant in Lebanon reported that 24.6% of patients with type II DM had DR at their first ophthalmologic visit, with 8.9% presenting with PDR and 16.7% with macular edema, including 6.2% with severe forms. Moreover, 44.1% had VI based on Snellen chart testing, with 11.2% classified as severe [34], which is less than that in our study. These findings highlight the urgent need for effective screening [35], early diagnosis, and timely intervention for DR and its complications in Oman. Further longitudinal, hospital-based studies across multiple provinces in Oman are recommended to further assess the burden and progression of DR-related VI and to guide national eye health strategies.

The strengths of the current study include the well-defined clinical population and comprehensive ophthalmic assessments using standardized WHO and DR classification criteria. The findings contribute to our knowledge of DR-related VI patterns in Oman, a region with limited existing data. However, as this was a retrospective hospital-based study, selection bias and an underestimated number of undiagnosed cases may limit its generalizability. Further prospective, community-based studies with larger and more diverse participant groups are required to validate these findings and inform targeted screening and intervention strategies throughout the region.

CONCLUSIONS

We observed that VI had a considerable impact on patients with DM and DR in Al-Buraimi, Oman. Increased age and longer DR duration were significantly associated with greater VI severity, whereas blindness occurred exclusively in advanced DR stages, highlighting a vital need for early detection and timely management of DR to prevent irreversible vision loss. The predominance of cataract as a comorbid condition further emphasizes the need for integrated ocular care. Given the increasing prevalence of DM in Oman and the Gulf region, targeted screening and public health strategies are essential to mitigate the visual consequences of DR. Further community-based studies are warranted to provide a more robust, practical perspective on this preventable cause of VI, inform national eye health policies, and improve long-term outcomes.

ETHICAL DECLARATIONS

Ethical approval: This study was approved by the Research Ethics Committee of the University of Buraimi (Ref. No. AY22-23COHS-R11) and the Research Ethical Review and Approval Committee, Ministry of Health, Al Buraimi Governorate (Ref. No. MoH/CSR/23/26671). Written informed consent was obtained from all participants, and the study adhered to the ethical standards of the Declaration of Helsinki.

Conflict of interest: None.

FUNDING

This research was supported by the University of Buraimi, Sultanate of Oman, through an internal research grant (IRG/UoB/CoHS/-004/2022-23).

ACKNOWLEDGMENTS

The authors express their gratitude to the individuals who voluntarily participated in the study, as well as to Al Buraimi Hospital and Polyclinic for their support.

REFERENCES

- Purola PKM, Ojamo MUI, Gissler M, Uusitalo HMT. Changes in Visual Impairment due to Diabetic Retinopathy During 1980-2019 Based on Nationwide Register Data. Diabetes Care. 2022 Sep 1;45(9):2020-2027. doi: 10.2337/dc21-2369. PMID: 35838317; PMCID: PMC9472510.
- 2. Alemu Mersha G, Alimaw YA, Woredekal AT. Prevalence of diabetic retinopathy among diabetic patients in Northwest Ethiopia-A cross sectional hospital based study. PLoS One. 2022 Jan 21;17(1):e0262664. doi: 10.1371/journal.pone.0262664. PMID: 35061820; PMCID: PMC8782290.
- Romero-Aroca P, López-Galvez M, Martinez-Brocca MA, Pareja-Ríos A, Artola S, Franch-Nadal J, Fernandez-Ballart J, Andonegui J, Baget-Bernaldiz M. Changes in the Epidemiology of Diabetic Retinopathy in Spain: A Systematic Review and Meta-Analysis. Healthcare (Basel). 2022 Jul 16;10(7):1318. doi: 10.3390/healthcare10071318. PMID: 35885844; PMCID: PMC9320037.
- 4. Al-Namaeh M. Common causes of visual impairment in the elderly. Med Hypothesis Discov Innov Ophthalmol. 2022 Feb 24;10(4):191-200. doi: 10.51329/mehdiophthal1438. PMID: 37641654; PMCID: PMC10460237.
- 5. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan;183:109119. doi: 10.1016/j.diabres.2021.109119. Epub 2021 Dec 6. Erratum in: Diabetes Res Clin Pract. 2023 Oct;204:110945. doi: 10.1016/j.diabres.2023.110945. PMID: 34879977; PMCID: PMC11057359.
- Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL, Sacre JW, Karuranga S, Sun H, Boyko EJ, Magliano DJ. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022 Jan;183:109118. doi: 10.1016/j.diabres.2021.109118. Epub 2021 Dec 6. PMID: 34883189.
- 7. Lam AA, Lepe A, Wild SH, Jackson C. Diabetes comorbidities in low- and middle-income countries: An umbrella review. J Glob Health. 2021 Jul 24;11:04040. doi: 10.7189/jogh.11.04040. PMID: 34386215; PMCID: PMC8325931.
- 8. International Diabetes Federation. 'Oman, Oman Diabetes Association'. Available at: https://idf.org/our-network/regions-and-members/middle-east-and-north-africa/members/oman/ (Accessed: 10 July, 2024).
- Mohamed Z, Vankudre GS, Ayyappan JP, Noushad B, Alzeedi AN, Alazzani SS, Alkaabi AJ. Vision-Related Quality of Life Among Diabetic Retinopathy Patients in a Hospital-Based Population in the Sultanate of Oman. Clin Optom (Auckl). 2024 May 19;16:123-129. doi: 10.2147/OPTO.S462498. PMID: 38784861; PMCID: PMC11114135.

- Agroiya P, Alrawahi AH, Pambinezhuth F, Al Busaidi NB. Diabetic retinopathy among Omanis: Prevalence and clinical profile. Oman J Ophthalmol. 2020 May 28;13(2):76-83. doi: 10.4103/ojo.OJO_225_2019. PMID: 32792802; PMCID: PMC7394070.
- 11. Ruta LM, Magliano DJ, Lemesurier R, Taylor HR, Zimmet PZ, Shaw JE. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. Diabet Med. 2013 Apr;30(4):387-98. doi: 10.1111/dme.12119. PMID: 23331210.
- 12. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund J, Haffner S, Hamman RF, Ikram MK, Kayama T, Klein BE, Klein R, Krishnaiah S, Mayurasakorn K, O'Hare JP, Orchard TJ, Porta M, Rema M, Roy MS, Sharma T, Shaw J, Taylor H, Tielsch JM, Varma R, Wang JJ, Wang N, West S, Xu L, Yasuda M, Zhang X, Mitchell P, Wong TY; Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012 Mar;35(3):556-64. doi: 10.2337/dc11-1909. Epub 2012 Feb 1. PMID: 22301125; PMCID: PMC3322721.
- 13. Kempen JH, O'Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, Taylor HR, Hamman RF; Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004 Apr;122(4):552-63. doi: 10.1001/archopht.122.4.552. PMID: 15078674.
- 14. Wong TY, Klein R, Islam FM, Cotch MF, Folsom AR, Klein BE, Sharrett AR, Shea S. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol. 2006 Mar;141(3):446-455. doi: 10.1016/j.ajo.2005.08.063. PMID: 16490489; PMCID: PMC2246042.
- 15. Khandekar RB, Al-Lawati JA. Epidemiology of diabetic retinopathy in Oman: Two decades of research. Oman J Ophthalmol. 2015 Jan-Apr;8(1):1-2. doi: 10.4103/0974-620X.149853. PMID: 25709265; PMCID: PMC4333535.
- 16. Al-Rashdi FA, Al-Mawali A. Prevalence of Diabetic Retinopathy in Oman: A Two Decade National Study. Oman Med J. 2021 Mar 17;36(2):e238. doi: 10.5001/omj.2021.57. PMID: 33768969; PMCID: PMC7969846.
- 17. Al Ghamdi AH, Rabiu M, Hajar S, Yorston D, Kuper H, Polack S. Rapid assessment of avoidable blindness and diabetic retinopathy in Taif, Saudi Arabia. Br J Ophthalmol. 2012 Sep;96(9):1168-72. doi: 10.1136/bjophthalmol-2012-301874. Epub 2012 Jul 11. PMID: 22790436.
- 18. Al-Maskari F, El-Sadig M. Prevalence of diabetic retinopathy in the United Arab Emirates: a cross-sectional survey. BMC Ophthalmol. 2007 Jun 16;7:11. doi: 10.1186/1471-2415-7-11. PMID: 17572909; PMCID: PMC1913498.
- 19. Al-Adsani AM. Risk factors for diabetic retinopathy in Kuwaiti type 2 diabetic patients. Saudi Med J. 2007 Apr;28(4):579-83. PMID: 17457481.
- 20. Al Alawi E, Ahmed AA. Screening for diabetic retinopathy: the first telemedicine approach in a primary care setting in Bahrain. Middle East Afr J Ophthalmol. 2012 Jul-Sep;19(3):295-8. doi: 10.4103/0974-9233.97928. PMID: 22837622; PMCID: PMC3401798.
- 21. Elshafei M, Gamra H, Khandekar R, Al Hashimi M, Pai A, Ahmed MF. Prevalence and determinants of diabetic retinopathy among persons ≥ 40 years of age with diabetes in Qatar: a community-based survey. Eur J Ophthalmol. 2011 Jan-Feb;21(1):39-47. doi: 10.5301/ejo.2010.2699. PMID: 20602322.
- 22. Al-Amer RM, Khader Y, Malas S, Abu-Yaghi N, Al-Bdour M, Ajlouni K. Prevalence and risk factors of diabetic retinopathy among Jordanian patients with type 2 diabetes. Digit J Ophthalmol. 2008 Aug 4;14:42-49. doi: 10.5693/djo.01.2008.013. PMID: 29440980; PMCID: PMC5798163.
- 23. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021 Feb;9(2):e144-e160. doi: 10.1016/S2214-109X(20)30489-7. Epub 2020 Dec 1. Erratum in: Lancet Glob Health. 2021 Apr;9(4):e408. doi: 10.1016/S2214-109X(21)00050-4. PMID: 33275949; PMCID: PMC7820391.
- 24. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global Estimates on the Number of People Blind or Visually Impaired by Diabetic Retinopathy: A Meta-analysis From 1990 to 2010. Diabetes Care. 2016 Sep;39(9):1643-9. doi: 10.2337/dc15-2171. Erratum in: Diabetes Care. 2016 Nov;39(11):2096. doi: 10.2337/dc16-er11. PMID: 27555623.
- Saramies J, Koiranen M, Auvinen J, Uusitalo H, Hussi E, Cederberg H, Keinänen-Kiukaanniemi S, Tuomilehto J. 22year trends in dysglycemia and body mass index: A population-based cohort study in Savitaipale, Finland. Prim Care Diabetes. 2021 Dec;15(6):977-984. doi: 10.1016/j.pcd.2021.09.010. Epub 2021 Oct 11. PMID: 34649826.
- 26. ICD. 'ICD-10 Version:2019: International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-'. Available at: https://icd.who.int/browse10/2019/en#/H54 (Accessed: 10 July, 2024).

- Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT; Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003 Sep;110(9):1677-82. doi: 10.1016/S0161-6420(03)00475-5.
 PMID: 13129861.
- 28. Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes. 2013 Dec 15;4(6):290-4. doi: 10.4239/wjd.v4.i6.290. PMID: 24379919; PMCID: PMC3874488.
- 29. Khandekar R, Al Lawatii J, Mohammed AJ, Al Raisi A. Diabetic retinopathy in Oman: a hospital based study. Br J Ophthalmol. 2003 Sep;87(9):1061-4. doi: 10.1136/bjo.87.9.1061. PMID: 12928265; PMCID: PMC1771859.
- 30. Pérez-Peralta L, Parra DR, Graue-Hernández E, Hernández-Jiménez S, Almeda-Valdés P, Velázquez-Jurado H, Jiménez-Corona A. Visual impairment associated with diabetic retinopathy and macular edema: a hospital-based study. Gac Med Mex. 2023;159(3):202-209. English. doi: 10.24875/GMM.M23000764. PMID: 37494708.
- 31. Awad SF, Al-Mawali A, Al-Lawati JA, Morsi M, Critchley JA, Abu-Raddad LJ. Forecasting the type 2 diabetes mellitus epidemic and the role of key risk factors in Oman up to 2050: Mathematical modeling analyses. J Diabetes Investig. 2021 Jul;12(7):1162-1174. doi: 10.1111/jdi.13452. Epub 2020 Nov 27. PMID: 33112504; PMCID: PMC8264408.
- 32. Rice J. Cataract and diabetic retinopathy. Community Eye Health. 2011 Sep;24(75):9. PMID: 22125363; PMCID: PMC3218393.
- 33. Somaiya M, Burns JD, Mintz R, Warren RE, Uchida T, Godley BF. Factors affecting visual outcomes after small-incision phacoemulsification in diabetic patients. J Cataract Refract Surg. 2002 Aug;28(8):1364-71. doi: 10.1016/s0886-3350(02)01319-6. PMID: 12160805.
- 34. Harb W, Harb G, Chamoun N, Kanbar A, Harb M, Chanbour W. Severity of diabetic retinopathy at the first ophthalmological examination in the Lebanese population. Ther Adv Ophthalmol. 2018 Aug 14;10:2515841418791950. doi: 10.1177/2515841418791950. PMID: 30140789; PMCID: PMC6096670.
- 35. Appukumran R, Shyamsundar K, Agrawal M, Khurana R, Pannu A, Kumar P. Eight years' experience in mobile teleophthalmology for diabetic retinopathy screening. Med Hypothesis Discov Innov Ophthalmol. 2023 Feb 3;11(4):162-170. doi: 10.51329/mehdiophthal1460. PMID: 37641607; PMCID: PMC10460246.