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ABSTRACT
Background: Acanthamoeba keratitis represents a devastating corneal infection caused by free-living protozoan organisms. This

condition has evolved from an extraordinarily rare disease to a significant public health concern, with increasing global incidence. The
infection predominantly affects contact lens wearers and poses substantial diagnostic and therapeutic challenges. This narrative review
aims to provide analysis of current knowledge regarding Acanthamoeba keratitis, including epidemiology, pathogenesis, diagnostic
approaches, treatment strategies, and prevention methods, to guide clinicians in optimal patient management.

Methods: This review was conducted through a literature search of PubMed-indexed journals from January 2000 to August 2025,
incorporating current information on pathophysiology, clinical features, diagnosis, therapy, and outcomes of Acanthamoeba keratitis.
Keywords included “Acanthamoeba keratitis”, “contact lens-related keratitis”, “Acanthamoeba diagnosis”, and “Acanthamoeba
treatment”. English-language publications including original articles, reviews, case reports, and clinical studies were included based
on relevance to current diagnostic and therapeutic practices, with an emphasis on recent advances in the field.

Results: Contact lens wearers comprised the vast majority of cases, with soft contact lens users representing the predominant affected
population. Peak occurrence involves young adults aged 2040 years, with water-based transmission through contaminated domestic
supplies representing a significant risk pathway. Clinical manifestations commonly include epithelial abnormalities, stromal
infiltration, and ring infiltrates in advanced cases. Traditional culture methods evidence limited sensitivity (33-67%), while advanced
diagnostic approaches include polymerase chain reaction (PCR) and in vivo confocal microscopy (IVCM) achieving superior accuracy
(sensitivity 77-100%, specificity 84-100%). First-line therapy employs biguanides and diamidines with prolonged administration.
Advanced treatment options include oral miltefosine for refractory cases, azole antifungals, and surgical interventions ranging from
epithelial debridement to corneal transplantation. Early diagnostic recognition represents the strongest predictor of visual recovery,
with diagnostic delays associated with poor prognosis.

Conclusions: Acanthamoeba keratitis management requires high clinical suspicion, rapid diagnosis using advanced techniques such
as IVCM and PCR, and prolonged antimicrobial therapy. Early diagnosis remains the most important predictor of visual recovery.
Prevention through proper contact lens hygiene and water exposure avoidance is paramount. Future research priorities include

development of novel antimicrobial agents and enhanced prevention strategies.
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INTRODUCTION

Acanthamoeba keratitis constitutes an uncommon yet devastating corneal infection affecting patients worldwide. It is
caused by Acanthamoeba, free-living amoeba distributed ubiquitously across environmental sources including water,
soil, and air, with Acanthamoeba castellanii and Acanthamoeba polyphaga constituting the two main, most common
pathogenic species [1]. The pathological process advances through progressive corneal inflammatory responses,
leading to epithelial damage and ulceration, potentially resulting in significant vision impairment absent timely
diagnosis and treatment [2]. Clinical significance derives from its increasing frequency and the difficulties associated
with diagnosis and management, as symptoms often resemble other types of infectious keratitis. This makes early and
accurate recognition challenging [1, 3].

The initial cases were reported in 1974 and 1975, with incidence increasing in the 1980s and 1990s in parallel with
the widespread adoption of contact lens use [4]. Between 2009 and 2016, the mean incidence of Acanthamoeba keratitis
more than doubled compared with the preceding seven years, reaching 8.3 cases annually, including six bilateral cases,
as reported by McKelvie t al. [5]. At least 24 amoebic protozoa species of Acanthamoeba have been recognized, with
keratitis representing the main ophthalmic manifestation [6]. These organisms exist widely in environmental water
sources such as tap water and swimming pools [6, 7]. Contact lens wearers face the highest risk, with history of contact
lens use documented in over 90% of recent cases, though the condition also develops in non-lens users following
contaminated water contact or in immunocompromised individuals [1, 4, 6-8].

The serious visual complications associated with this infection require comprehensive understanding from
ophthalmologists. This narrative review synthesizes current evidence and recent developments to improve clinical
diagnosis, optimize treatment approaches, and enhance prevention strategies. We examine epidemiological patterns,
risk factors, disease mechanisms, diagnostic methods, therapeutic options, and outcome predictors outlined in

literature while highlighting evidence-based prevention measures for reducing disease burden in at-risk populations.

METHODS

This review was conducted through a comprehensive literature search incorporating current information on
pathophysiology, clinical features, diagnosis, medical and surgical therapy, and outcomes of Acanthamoeba keratitis.
The review utilized established academic sources and focused on evidence-based approaches to its management. A
comprehensive literature search was conducted using PubMed database. The search strategy employed the following
keywords: “Acanthamoeba keratitis”, “contact lens-related keratitis”, “ Acanthamoeba diagnosis”, and "Acanthamoeba
treatment”, combined using Boolean operators (AND, OR). The time interval covered publications from January 2000
to August 2025, with inclusion of seminal earlier studies when historically significant. Types of records included were
original research articles, systematic reviews, meta-analyses, case series, case reports, and clinical trials. The search was
restricted to English-language publications, although key studies in other languages were included if English abstracts
were available and content was deemed essential. Conference abstracts, letters to editors without substantial data, and
duplicate publications were excluded to ensure quality and relevance of the included literature. Literature was selected

based on relevance to current diagnostic and therapeutic practices, with an emphasis on recent advances in the field.

RESULTS and DISCUSSION

Epidemiological Patterns

Acanthamoeba keratitis has evolved from an extraordinarily rare condition affecting fewer than two individuals per
million lens wearers two decades ago to a significant public health concern [1]. Current global statistics reveal 23,561
annual cases, translating to 2.9 per million population and representing 2% of all corneal infections worldwide [1, 9].
This remarkable escalation stems from enhanced diagnostic capabilities, increased physician awareness, and
substantial expansion of contact lens markets globally [1].

Furthermore, disease prevalence varies dramatically across continents. American healthcare systems have
documented outbreak scenarios connected to point-of-use contamination of lens solutions [10]. Infection rates in
Europe continue to climb [11, 12], an upward trend indicating worldwide spread driven by contact lens popularity
[12-15]. Peak occurrence involves young adults aged 2040 years [1], typically affecting healthy patients, though those
with weakened immunity or existing ocular surface disorders encounter greater vulnerability [1, 16]. Regional
variations in disease etiology reflect contact lens usage patterns. In India, Acanthamoeba keratitis represents
approximately 1% of corneal ulcer cases [17], contrasting with much higher prevalence in nations with extensive
contact lens adoption [15, 18].
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A recent Turkish study of 60 suspected keratitis cases identified Acanthamoeba in 11.66% (n = 7) of patients
through polymerase chain reaction (PCR) analysis, revealing T4 and T5 genotypes, with T5 representing the first
documented occurrence in Turkiye. Contact lens use was confirmed as the predominant risk factor in this study [19].
Importantly, in regions with limited contact lens utilization the majority were non-contact lens wearers, accounting
for 99.1% of individuals with culture-proven Acanthamoeba keratitis [20]. Environmental studies examining tap

water sources reveal clear associations between domestic water contamination and disease development [21, 22].

Life Cycle and Pathogenesis

When conditions favor growth—adequate food sources, neutral pH, and approximately 30°C temperatures—the
metabolically active trophozoite form undergoes mitotic reproduction [23], being motile at this stage and measuring
25-40 pm in diameter, and initiating corneal tissue invasion [24, 25]. Adverse environmental pressure prompts
encystment [26-28]. The resulting protective capsules feature dual-wall construction and measure 15-28 pm in
diameter [27]. This survival mechanism allows the parasite to withstand hostile environments that would destroy the
vulnerable active form [23]. The ability to produce disease depends on structural and enzymatic mechanisms, with
cyst formation representing the most critical feature, as this dormancy process activates during hostile environmental
circumstances. The cystic forms exhibit remarkable resilience against temperature variations, conventional
disinfection protocols, and radiation exposure while maintaining osmotic tolerance [28-30].

Tissue invasion mechanisms involve acanthopodia-mediated attachment to both biological and synthetic
surfaces, while pseudopods give motility and facilitate intercellular penetration pathways [31]. Successful
pathogenesis requires intimate cellular contact with host tissues through specialized adhesion molecules [32].
Multiple enzymatic factors contribute to tissue destruction, including neuraminidase, elastase, diverse proteolytic
enzymes, glycosidases, and superoxide dismutase, which collectively enable amoebic invasion and subsequent

disease manifestation [32-34].

Risk Factors

The development of Acanthamoeba keratitis evidences strong associations with contact lens wear, which nearly 90%
of patients do [1]. Infection likelihood increases when users engage in risky behaviors including cleaning lenses with
tap water, using outdated or inappropriate cleaning products, ignoring replacement schedules, and practicing
prolonged wearing patterns [15, 35]. Overnight lens wear systems create particular hazards by limiting corneal oxygen
access and establishing optimal growth conditions for the pathogen [1]. Additional lens-related risk factors encompass
insufficient disinfection procedures, poor hygiene standards, and minor trauma from handling procedures [4, 35].

Soft contact lenses dominate the infection pattern across multiple studies, though all lens varieties carry risk [4,
5, 36]. Ross et al. [36] showed that soft lens users comprised 82.1% (n = 69) of 84 affected individuals and 17.9% (n =
15) wore rigid contact lens. Two-four-week daily wear systems were involved in 55.1% (n = 38) of cases and extended
wear in 30.4% (n = 21), yet despite expectations of complete safety daily disposable lenses still accounted for 10.1% (n
=7) of patients with Acanthamoeba keratitis [36]. McKelvie et al. [5] reported similar findings, with 90% (n = 48) of
cases of Acanthamoeba keratitis involving soft lens wearers where monthly replacement lenses constituted 60.4% (n
= 29) of cases, weekly disposable 12.5% (n = 6), and daily disposable 12.5% (n = 6). This confirms that even daily
disposable lenses cannot guarantee complete protection [5].

Water-based transmission pathways create substantial infection risks, as the pathogen thrives in household water
systems, public swimming areas, and spa facilities. Direct ocular contamination occurs when tap water comes into
contact with lenses during cleaning or storage procedures; studies show direct linkage between contaminated
domestic water supplies and infection development [21, 22, 37, 38]. Physical eye damage and underlying surface
abnormalities establish additional vulnerability pathways. Foreign body injuries or lens-handling trauma create
pathogen access routes into corneal tissue [39], while patients with compromised immunity face elevated infection
probability [1, 40, 41].

Clinical Presentations

Acanthamoeba keratitis presents as a progressive corneal inflammatory disorder that creates significant diagnostic
challenges through its non-specific clinical features, often resembling other infectious keratitis forms [40, 42]. Patients
typically experience ocular pain, conjunctival hyperemia, photophobia, and excessive lacrimation [4, 40], although

the characteristic severe pain disproportionate with clinical findings may be absent in some cases [43].
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Disease progression follows a pattern over weeks to months, starting with epithelial changes and advancing

through stromal layers before potentially developing the distinctive ring infiltrate [4, 40]. Current classification
systems identify five sequential stages: epithelial inflammation, epithelial inflammation with perineuritis, anterior
stromal disease, deep stromal involvement, and ring infiltrate formation, while limbitis and scleritis indicate
advanced disease [4, 44].

Initial manifestations include punctate epithelial erosions, gray-dirty epithelium, pseudodendritic patterns, and
perineural infiltrates (Figure 1). These features closely resemble viral keratitis, particularly herpes simplex infections,
leading to frequent initial misdiagnoses [4, 40, 42, 45]. Additional early signs encompass conjunctival follicles,
subepithelial opacities mimicking adenoviral infection, irregular epithelial defects, and microcyst formation [46].
Interestingly, unusual clinical presentations have also been documented in the literature. A case report described
negative fluorescein staining as an early sign of Acanthamoeba keratitis, presenting as Y-shaped linear epitheliopathy
with ridge-like epithelial irregularity in a contact lens wearer, highlighting the importance of detecting negative
fluorescein staining in early diagnosis [47].

Advanced disease involves deeper stromal inflammation with ulceration, anterior chamber reactions, hypopyon
formation, and endothelial dysfunction (Figure 2). Radial infiltrates along corneal nerves become increasingly
prominent, producing the intense pain characteristic of progressive infection. Multiple stromal infiltrates help
distinguish Acanthamoeba keratitis from typically unifocal bacterial keratitis. Wessely immune ring may appear
occasionally [40, 46, 48] (Figure 3).

Figure 1. Initial manifestations of Acanthamoeba keratitis. (A) Gray-dirty epithelium showing loss of corneal
transparency. (B) Gray-dirty epithelium with punctate epitheliopathy. (C) Pseudo-dendriform lesion. (D)
Perineural infiltration showing inflammatory cell accumulation around corneal nerve fibers, a characteristic
feature of Acanthamoeba keratitis.

Figure 2. Advanced manifestations of Acanthamoeba keratitis. (A) Extensive epithelial defect with hypopyon
formation in the anterior chamber. (B) Stromal keratitis showing deep corneal involvement with inflammatory
infiltrates. (C) Suppurative keratitis in end-stage case with severe corneal destruction and purulent inflammation.
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Figure 3. Wessely immune ring in Acanthamoeba keratitis. Characteristic circular inflammatory infiltrate

representing an immune-mediated response.

Most cases present unilaterally, with bilateral involvement occurring in only 7.5-11% of patients, primarily
contact lens users [46]. Clinical studies show variable presentation frequencies [5, 36, 49]. McKelvie et al. [5] found
epithelial abnormalities in 76% (n = 44) of cases, stromal infiltration in 40% (n = 22), anterior chamber reaction in 29%
(n =17), corneal ulceration in 17% (n = 10), pseudodendrites in 14% (n = 8), neurokeratitis in 9% (n = 5), ring stromal
infiltrate in 9% (n = 5), hypopyon in 5% (n = 3), and corneal thinning in 2% (n = 1) [5]. Examining 116 patients with
Acanthamoeba keratitis, Ross et al. [36] reported epithelial/subepithelial infiltrates in 56% (n = 65) of cases, punctate
keratopathy in 52.6% (n = 61), epithelial ulceration in 49.1% (n = 57), ring infiltrate in 29.3% (n = 34), and radial
perineuritis in 21.6% (n = 25) [36]. Non—contact lens users with Acanthamoeba keratitis often present with more severe
disease, and the absence of typical features such as disproportionate pain, radial keratoneuritis, or ring infiltrate does
not rule out the condition in this context. Garg et al. evaluated non-contact lens wearers with Acanthamoeba keratitis
and reported ring infiltrates in 33% of cases, whereas radial keratoneuritis was identified in only 2.7% [49].
Complications include secondary glaucoma from trabecular dysfunction and outflow obstruction by inflammatory
cells or synechiae formation, along with anterior uveitis, iris atrophy, cataract development, scleral involvement,

corneal perforation, and posterior segment extension [4, 46].

Diagnostic Approaches

Traditional Methods

Microscopic examination and culture methods constitute the cornerstone of traditional Acanthamoeba keratitis
diagnosis. Culture techniques utilize non-nutrient agar plates with Escherichia coli overlay [50]. When infection is
suspected, direct specimen analysis uses various staining approaches. Calcofluor white and potassium hydroxide
represent common techniques, while hematoxylin and eosin, periodic acid-Schiff, and Gomori methenamine silver
offer additional options [51, 52]. Gram or Giemsa stains show cysts as structures with double walls and clear centers
[52]. Potassium hydroxide wet mount works very well with 91.4% sensitivity and 100% specificity, showing cysts as
bright structures with double walls [53]. Calcofluor white staining uses a fluorescent dye that sticks to cyst walls,
yielding high accuracy but needing special fluorescence microscopes [52, 53].

Culture methods present significant limitations, including prolonged processing times, false-negative results due
to suboptimal sensitivity, and requirements for specialized personnel and equipment. Published studies report
sensitivity ranging from 33% to 67%, although specificity may reach 100%, with incubation periods extending up to
10 days [54-56]. Successful organism growth enables antimicrobial susceptibility testing to guide therapeutic selection
[57]. Despite limitations, culture techniques remain clinically important. Contemporary diagnostic practice integrates
multiple methodologies including PCR, immunofluorescence assays, and in vivo confocal microscopy (IVCM) to

achieve enhanced diagnostic speed and improved sensitivity [57].

Molecular Diagnostics

PCR represents a powerful molecular technique for rapid deoxyribonucleic acid (DNA) amplification and pathogen
detection in Acanthamoeba keratitis diagnosis. This method evidences higher sensitivity and comparable specificity
to culture in detecting pathogen genetic material from ocular specimens [58]. PCR technology detects minimal
Acanthamoeba DNA concentrations while delivering rapid results that enable early diagnosis and prompt treatment

initiation [57]. Target sequences typically involve the 18S ribosomal DNA regions, a core component of 40S small
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subunit, showing extreme sensitivity [55, 59]. The combination of primer pairs was observed to enhance diagnostic
accuracy, with sensitivity increasing from 81.0% when a single pair was used to 94.0% when three primer pairs were
combined [60]. The Schroeder primers, specifically Jun Dimerization Protein (JDP) 1 and JDP2 targeting the 185
ribosomal ribonucleic acid (rRNA) gene, are demonstrated to provide a reliable amplification system for
Acanthamoeba detection across all known genotypes [61].

Molecular diagnostics show particular clinical value in patients with prior antibiotic exposure, where culture
methods often produce negative results despite persistent clinical suspicion [33]. Advanced genetic sequencing
technologies, including next-generation sequencing platforms, provide comprehensive genetic analysis of corneal

specimens, enabling precise species identification and detailed genotype characterization [62].

In Vivo Confocal Microscopy

IVCM provides non-invasive, real-time visualization of corneal architecture through high-resolution layer
examination, enabling direct pathogen detection and infection severity assessment [57, 62]. This rapid diagnostic
capability allows prompt initiation of treatment protocols, resulting in improved patient outcomes. Organism
identification depends on characteristic morphological features within corneal tissues [57, 62].

Acanthamoeba cysts appear as round, highly reflective structures measuring 5-20 um in diameter with double-
walled spherical configurations, displaying high-refractive nuclei surrounded by low-refractile rings and dark
borders [63]. Acanthamoeba cysts could be challenging to visualize due to their similarity to damaged keratocyte or
leukocytes. Four IVCM image patterns—bright spots, target images, clusters of hyperreflective objects, and
trophozoite-like objects—were significantly associated with PCR-positive Acanthamoeba keratitis. Target and
trophozoite images showed 100% specificity, 98.2% clusters, and 48.2% bright spots. Using the presence of target,
cluster, or trophozoite images for diagnosis yielded a positive predictive value of 87.5% and a negative predictive
value of 58.5% [64].

Multiple studies have observed IVCM’s diagnostic superiority and clinical utility in Acanthamoeba keratitis
management. Performance characteristics evidence superior diagnostic accuracy with sensitivity spanning 88.2-100%
and specificity 98.2-100% compared to traditional methods [55, 65]. Lee et al. [66] showed that [IVCM implementation
alongside culture methods resulted in significantly accelerated diagnosis and enhanced visual outcomes compared to
culture-only protocols. Hoffman et al. [50] found that IVCM outperformed both PCR and culture techniques,
establishing itself as the most sensitive technique for Acanthamoeba keratitis identification. Recchioni et al. [67]
documented considerable enhancements in clinical results when IVCM was utilized as a supplementary diagnostic
approach, enabling appropriate patient care and timely clinical decision-making [67].

Several limitations affect clinical implementation of IVCM. Diagnostic accuracy depends heavily on operator
experience and image interpretation expertise, creating potential variability in results [68]. There are potential false
negatives from inflammatory cell masking in stromal disease, and false positives when macrophages mimic

Acanthamoeba cysts [57].

Figure 4. Anterior segment optical coherence tomography (AS-OCT) of Acanthamoeba keratitis, displaying

stromal hyperreflectivity.
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Anterior Segment Optical Coherence Tomography

Anterior segment optical coherence tomography (AS-OCT) serves as a valuable noninvasive adjunct in
Acanthamoeba keratitis evaluation. The technology excels at identifying perineuritis through characteristic reflective
oblique bands within deep corneal stroma [69], proving particularly beneficial when stromal edema and infiltrates
complicate clinical assessment (Figure 4). However, current AS-OCT systems lack sufficient resolution for direct cyst

or trophozoite visualization, limiting their diagnostic scope in organism detection [46].

Machine-Learning Technologies

Artificial intelligence represents a transformative advancement in ophthalmologic diagnostics for Acanthamoeba
keratitis detection. Zhang et al. [70] developed KeratitisNet, analyzing slit-lamp photographs. The combination of
ResNext101_32x16d and DenseNet169, termed KeratitisNet, achieved the highest performance for diagnosing
bacterial, fungal, and herpes simplex keratitis, with an average accuracy of 77.08%. Acanthamoeba-specific detection
reached 83.81% accuracy and area under curve of 0.96 [70]. Deep-learning algorithms utilizing IVCM reveal superior
characteristics. Essalat et al. [71] developed IVCM-based systems achieving 91.37% sensitivity and 98.25% specificity
for diagnosis of Acanthamoeba keratitis. In a retrospective study using 3312 IVCM images from 17 patients with
culture-positive Acanthamoeba keratitis, a deep learning-based model achieved sensitivity and specificity of 76%
[72]. Koyama et al. [73] adapted a deep-learning architecture originally designed for facial recognition to slit-lamp

images, achieving a diagnostic accuracy of 97.9% and an area under the curve of 0.995 for Acanthamoeba keratitis.

Differential Diagnosis

Acanthamoeba keratitis presents significant diagnostic challenges due to clinical features overlapping with other
corneal pathologies. Registry data indicate substantial misdiagnosis rates, with cases of Acanthamoeba keratitis
initially misdiagnosed as herpetic keratitis in 47.6% of instances, bacterial keratitis in 25.2%, and fungal keratitis in
3.9% [42]. Herpetic keratitis represents the most frequent diagnostic confusion, particularly disciform variants
presenting with clinical characteristics of corneal irregularities, ring-shaped infiltrate, and opacity. Herpetic keratitis
characteristically presents unilaterally with keratic precipitates, pseudoguttata, and elevated intraocular pressure. The
key distinguishing feature is Acanthamoeba’s severe pain disproportionate to clinical findings, contrasting with HSV
keratoneuritis which typically exhibits reduced corneal sensation and pathognomonic dendritic lesions with terminal
bulbs [74-77].

Bacterial keratitis warrants consideration in contact lens users presenting with purulent discharge, rapid
progression, and anterior chamber inflammation [40, 78]. Fungal keratitis can closely resemble Acanthamoeba
Kkeratitis when ring infiltrates develop, occurring in 1-25% of fungal cases compared with about 30% of Acanthamoeba
cases. However, fungal keratitis is typically characterized by feathery borders, satellite lesions, dry-textured
infiltrates, and color appearance. Given that pooled prevalence of fungal keratitis was reported as 23.64% of clinically
suspected cases of microbial keratitis, this diagnosis merits primary consideration during ring infiltrate evaluation
[40, 48, 78, 79].

Non-infectious causes of ring infiltrates include rheumatoid arthritis, which produces sterile corneal rings
through immune complex deposition; topical anesthetic abuse or nonsteroidal anti-inflammatory drug toxicity,
particularly after surface refractive surgery or in patients with preexisting dry eye syndrome; and complications of
corneal collagen cross-linking [40, 48].

Polymicrobial involvement affects 55% of Acanthamoeba keratitis, including bacterial co-infection (12.5%),
fungal (40%), and triple pathogen scenarios (5%), which can modify characteristic presentations [80, 81]. IVCM, by
evidencing double-walled cysts with hyperreflective spots, provides a definitive diagnosis of Acanthamoeba keratitis

and shows high sensitivity in detecting co-infections, particularly in atypical presentations [4].

Treatment Strategies
First-Line Treatment
Acanthamoeba keratitis requires prolonged antimicrobial therapy due to significant cystic resistance and organism
persistence within ocular tissues. Treatment employs multiple agents, primarily biguanides and diamidines. Initial
therapy begins with hourly topical administration, gradually tapering over weeks based on clinical response, with

total treatment duration spanning three months to over one year [46].
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Biguanide compounds serve as primary therapeutic agents for Acanthamoeba keratitis. Polyhexamethylene
biguanide (PHMB) and chlorhexidine represent preferred initial treatments due to their potent anti-Acanthamoeba
activity and broad antimicrobial spectrum [1, 46]. These agents bind ostiole mucopolysaccharides, facilitating cellular
penetration and phospholipid membrane disruption, resulting in organism death [46]. Diamidine compounds,
including propamidine and hexamidine, provide adjunctive therapy when combined with biguanides [82, 83]. These
cationic molecules disrupt cellular permeability and denature cytoplasmic proteins, demonstrating activity against
both trophozoite and cyst forms [4, 83].

A significant therapeutic advance has been achieved in monotherapy approaches. Dart et al. [84] showed that
PHMB 0.08% monotherapy achieves cure rates exceeding 86.7%, equivalent to conventional combination regimens
using PHMB 0.02% with propamidine 0.1%. This finding represents a significant therapeutic advancement, offering
simplified treatment protocols while maintaining therapeutic efficacy. Clinical dosing protocols utilize variable
concentrations based on patient requirements. PHMB formulations span 0.02-0.06% and chlorhexidine preparations
0.02-0.2% [43]. Toxicity profiles remain favorable at 0.02% concentrations, with rare epithelial damage. Prolonged
propamidine administration may occasionally induce toxic keratopathy [4].

The therapeutic landscape for Acanthamoeba keratitis has experienced significant advancement with the
development of AKANTIOR® (polihexanide 0.8 mg/mL [PHMB 0.08%]), the first licensed monotherapy specifically
indicated for this condition [84, 85]. This anti-amoebic polymer proves efficacious against both trophozoites and cysts
of Acanthamoeba species, and is formulated as single-dose topical eye drops. The randomized, assessor-masked,
active-controlled, multi-center Phase III The Orphan Drug for Acanthamoeba Keratitis (ODAK) trial enrolled 135
patients, demonstrating non-inferiority with a clinical resolution rate of 84.9% for AKANTIOR monotherapy
compared to 88.5% for combination therapy of PHMB 0.2 mg/mL plus propamidine 1.0 mg/mL. When adjusted for
confounding variables, the AKANTIOR arm achieved a cure rate of 86.7% versus 86.6% in the control group [84].

Comparative analysis with real-world treatment outcomes reveals promising results. In a retrospective study,
PHMB 0.08% achieved unweighted and weighted clinical cure rates of 84.8% and 85.1%, respectively, compared with
55.0% and 60.9% for conventional combination therapy with PHMB 0.02% plus diamidine 0.1% [86]. In a comparative
trial of PHMB 0.08% monotherapy versus PHMB 0.02% plus propamidine 0.1% for Acanthamoeba keratitis, both
treatment arms achieved a median best-corrected visual acuity of 20/20 with approximately similar interquartile
ranges. Poor outcomes (<20/200) occurred in 13.1% (8/61) and 13.6% (9/66) of patients, respectively, while trial failure
rates were also comparable (11.5% [7/61] vs. 15.2% [10/66]). The overall therapeutic keratoplasty rate was low (6.3%
[8/127]), with no significant difference between groups [84]. These findings support the need to move from variable
treatment protocols toward a more standardized therapeutic approach, which may ultimately lead to improved

outcomes in the management of Acanthamoeba keratitis [84, 86].

Advanced Treatment Options

When conventional biguanide and diamidine therapies fail to achieve resolution, oral miltefosine serves as an
important salvage treatment option, producing encouraging outcomes in refractory cases. However, this anti-amoebic
agent frequently triggers intense inflammatory responses, requiring concurrent topical and systemic corticosteroid
administration under careful clinical supervision [87, 88].

Azole antifungal agents exhibit potent activity against Acanthamoeba cysts by targeting sterol 14a-demethylase
and inhibiting ergosterol biosynthesis. The therapeutic effectiveness against both active and dormant parasite forms
stems from 31-35% sequence similarity between Acanthamoeba Cytochrome P450 51 (CYP51) and fungal CYP51
enzymes, making these compounds highly effective throughout the organism’s lifecycle [83].

Clinical studies yield variable therapeutic outcomes across different treatment modalities [88-90]. Musayeva et
al. [89] observed complete clinical success using triple-drug therapy combining topical voriconazole 1%, PHMB 0.02%,
and propamidine 0.1% in 28 patients with Acanthamoeba keratitis, including severe cases. Thulasi et al. [88] reported
successful pathogen eradication with miltefosine in treatment-resistant patients, though significant inflammation
required corticosteroid management. Conversely, Bagga et al. [90] found discordant results with topical miltefosine

monotherapy, demonstrating in vitro efficacy but poor clinical response.

Corticosteroid Therapy
Corticosteroid therapy in Acanthamoeba keratitis remains a contentious clinical issue. Although these medications
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effectively reduce inflammation and patient symptoms, they present considerable hazards, including disease
progression, diagnostic masking, elevated keratoplasty rates, diminished visual prognosis, and prolonged parasite
viability [1, 4]. Randag et al. [12] showed in multivariable regression analysis that corticosteroid use prior to diagnosis
was positively correlated with treatment failure. Additionally, isolated instances of severe infection deterioration
following steroid administration have been documented, warranting prudent use, especially in treatment-resistant
cases [91, 92]. Optimal corticosteroid implementation requires confirmed diagnosis and concurrent anti-amoebic
therapy [1, 4].

Surgical Interventions

Failed medical therapy necessitates surgical intervention for infection control and visual rehabilitation. Procedures
range from epithelial debridement for superficial necrosis to corneal transplantation for advanced disease. Early
intervention, within 5.3 months of symptom onset in therapy-resistant Acanthamoeba keratitis, yielded superior
visual outcomes compared with delayed surgery [93].

Disease severity determines surgical approach selection. Early infections with endothelial preservation benefit
from deep anterior lamellar keratoplasty (DALK), while advanced cases require full-thickness penetrating
procedures. Early intervention advocates recommend surgery within 30-60 days from onset of symptoms, concurrent
with antimicrobial therapy in poorly responsive cases [94, 95]. Sarnicola et al. [95] achieved successful DALK
outcomes in 11 refractory patients in a mean (standard deviation) postoperative follow-up of 24.8 (9.6) months without
recurrence or rejection, despite positive deep margins in two cases [95]. Acute presentations with abscess or
perforation require therapeutic penetrating keratoplasty [45, 96].

Timing and technique of surgical intervention significantly impact results [45, 93, 95]. A systematic review of 33
studies including 359 eyes with Acanthamoeba keratitis found that, following eradication of infection, optical
penetrating keratoplasty achieved the best outcomes, with 94% (82/87) graft clarity, 40% attaining visual acuity of
20/30 or better, and the lowest recurrence rate of 9.5%, outperforming both therapeutic penetrating keratoplasty and
therapeutic DALK [97]. Emergency therapeutic penetrating keratoplasty yields poor prognosis, including 56.2% graft
failure rates [98] and approximately 20% no-light-perception outcomes in therapeutic cases [99]. Therapeutic
keratoplasty is effective for refractory Acanthamoeba keratitis but carries higher risks and poorer vision; whenever
feasible, optical keratoplasty after infection resolution should be preferred for superior graft survival and visual
outcome [100]. Therapeutic lamellar keratoplasty offers superior visual outcomes compared with therapeutic
penetrating keratoplasty while maintaining comparable recurrence rates [101].

Recurrence of Acanthamoeba infection remains problematic, affecting 16.8% of therapeutic and 9.5% of optical
penetrating keratoplasties [97, 102]. Cyst reactivation in recipient tissue causes graft colonization, with steroid use
and hypopyon representing major risk factors. Prevention requires Imm healthy margins and prolonged

perioperative antimicrobial therapy [43, 46, 103].

Adjunctive Therapies

Corneal cross-linking using photo-activated chromophores (photo-activated chromophore for keratitis—corneal
cross-linking, PACK-CXL) has emerged as a promising supplementary approach for treating Acanthamoeba keratitis.
This treatment acts through multiple antimicrobial mechanisms: chromophore agents insert between the pathogen’s
nucleic acids, generate oxygen radicals that damage cell walls, and modify collagen structure to prevent collagenase
binding [4].

An in vitro study by Atalay [104] demonstrated that PACK-CXL with rose bengal (0.1% and 0.2%) activated by
green light (523-nm wavelength) exerted potent anti-amoebic effects against Acanthamoeba castellanii, whereas
riboflavin (0.1% and 0.25%) activated by UVA (365-nm wavelength) showed no significant amoebicidal activity.
Follow-up experiments in a rabbit model of Acanthamoeba castellanii keratitis validated that PACK-CXL treatment with
rose bengal significantly decreased parasite load and reduced disease severity [105]. Moreover, clinical application of
accelerated CXL with 0.1% riboflavin and UVA in six eyes of 5 patients with Acanthamoeba keratitis and progressive
corneal melting halted further melting, and none required emergency therapeutic penetrating keratoplasty [106].

Despite promising studies, PACK-CXL treatment requires further investigation due to inconsistent protocols and
insufficient data. In a systematic review of 25 studies, including two randomized controlled trials, Papaioannou et al.
[107] reported that 10 of 11 eyes with Acanthamoeba keratitis achieved healing with CXL, suggesting potential benefit;

however, data remain limited and further controlled studies are needed to confirm CXL efficacy. In a systematic
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review of 46 studies, including four randomized controlled trials, Ting et al. [108] reported that adjuvant PACK-CXL
accelerated corneal healing in infectious keratitis compared with standard antimicrobial therapy, although evidence
quality was low and data on Acanthamoeba keratitis remained insufficient. Among patients treated with PACK-CXL,
with or without standard antimicrobial therapy, causative microorganisms included 152 (46.6%) bacteria, 89 (27.3%)
fungi, 20 (6.1%) Acanthamoeba, 4 (1.2%) viruses, 20 (6.1%) mixed infections, and 41 (12.6%) culture-negative
presumed infectious keratitis.

Amniotic membrane transplantation provides another supportive intervention, utilizing biological membrane
placement over infected corneal surfaces to promote healing, alleviate patient discomfort, and control inflammatory

responses [109-111].

Clinical Outcomes and Prognostic Factors

Acanthamoeba keratitis prognosis depends on multiple interconnected variables that influence treatment success and
visual preservation. A 12-year retrospective study at Moorfields Eye Hospital (UK) analyzed outcomes in 194 patients,
identifying factors associated with poor prognosis. Older age, corticosteroid use before antiamoebic therapy,
prolonged symptom duration, and severe inflammatory complications—particularly scleritis—were the strongest
independent predictors of poor outcomes in patients with Acanthamoeba keratitis [112].

Early identification within fourteen days of symptom development remains the strongest predictor of visual
recovery [103, 113]. Diagnostic timing patterns reveal significant disparities across patient populations, with Ross et
al. [36] demonstrating that contact lens wearers achieve diagnosis in median duration of 27 days compared to 50 days
for non-contact lens users disease. Disease severity also influenced diagnostic timing: patients presenting with
advanced signs of Acanthamoeba keratitis had a median time to diagnosis of 35 days, compared with 19 days in those
without such signs [36]. Corticosteroid use before definitive diagnosis delays recognition, worsens final vision, and
enhances surgical need [1]. Visual outcomes reveal marked heterogeneity, with approximately 39% of patients
experiencing significant impairment or complete vision loss. Patients responding to medical therapy alone
consistently achieve superior visual outcomes compared to those requiring surgical intervention [1, 114]. The
requirement for surgical management, particularly therapeutic penetrating keratoplasty due to extensive damage,

indicates poor prognosis [1, 114].

Preventive Measures

Comprehensive public education targeting high-risk populations forms the cornerstone of effective Acanthamoeba
keratitis prevention. Water exposure elimination represents the most critical protective strategy, requiring lens
removal before swimming, showering, or hot tub use to prevent pathogen exposure [40, 115]. Using daily disposable
contact lens systems provides optimal safety through complete contaminant elimination via disposal protocols.
Essential hygiene practices constitute the preventive foundation, including thorough hand sanitization before lens
handling, exclusive use of recommended disinfection products, and strict replacement schedule adherence to
minimize contamination risks. Special populations require individualized preventive approaches.
Immunocompromised patients and individuals with occupational water exposure necessitate enhanced counseling
and specialized protective protocols [1, 4, 40].

This comprehensive narrative review synthesizes current knowledge from diverse study types, including original
research, case series, and clinical trials spanning over two decades (2000-2025), providing clinicians with practical,
evidence-based guidance for Acanthamoeba keratitis management. The review addresses all aspects of the disease
from pathogenesis to prevention, offering a perspective that is valuable for ophthalmologists. However, as a narrative
review this work lacks the systematic methodology and risk of bias assessment inherent to systematic reviews and
meta-analyses. The literature search was primarily limited to English-language publications, potentially excluding
relevant studies in other languages. Additionally, the heterogeneity of study designs and outcome measures in the
included literature limits the ability to draw definitive quantitative conclusions about optimal treatment protocols.
The rapidly evolving nature of diagnostic techniques and therapeutic approaches may also result in some information
becoming outdated as new evidence emerges.

In terms of future research directions, effective management of Acanthamoeba keratitis requires advances in
diagnostics, treatment, and prevention. Machine-learning technologies show diagnostic promise but must
demonstrate superiority over current methods while addressing cost-effectiveness and deployment challenges [70-
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72]. The greatest need is therapies targeting cyst-resistant forms, whose protective walls and survival abilities limit
treatment success. Progress may come from novel antimicrobials, improved delivery methods, or targeting virulence
factors such as protease mannose-induced protein (MIP)-133 [32, 116]. Understanding how mannose-binding proteins
aid attachment and how contact lenses increase mannosylated proteins on the corneal surface may open up preventive
strategies [116]. Prevention research is critical as global contact lens use expands, particularly in developing regions
with poor water safety and weak public health infrastructure [1, 4, 9]. Additional priorities include standardized
treatment protocols, early diagnostic markers, and long-term outcomes. Integrating novel therapies with artificial

intelligence-driven diagnostics may ultimately improve patient care worldwide.

CONCLUSIONS

Acanthamoeba keratitis represents one of the most challenging corneal infections in contemporary ophthalmology,
demanding immediate recognition and aggressive treatment to prevent devastating visual consequences. The dramatic
increase in global incidence, primarily driven by expanding contact lens usage, underscores the urgent need for enhanced
awareness among both clinicians and patients. The evolution of diagnostic technologies, particularly IVCM and molecular
techniques, has revolutionized our ability to achieve rapid and accurate identification. These advances have shifted the
diagnostic paradigm from reliance on traditional culture methods with their inherent limitations to sophisticated imaging and
genetic detection systems that enable timely therapeutic intervention. Treatment approaches have similarly evolved, with
recent evidence supporting simplified monotherapy regimens using higher-concentration biguanides while maintaining
awareness of advanced therapeutic options for refractory cases. The critical importance of early diagnosis cannot be overstated,
as it constitutes the most powerful predictor of visual preservation. Preventive strategies centered on proper contact lens
hygiene and water exposure avoidance continue to represent the most effective approach to reducing disease burden. As
contact lens usage expands globally, particularly in developing regions, comprehensive education programs and improved
water infrastructure become increasingly vital. Successful management of Acanthamoeba keratitis requires high clinical
suspicion, rapid diagnosis, appropriate treatment, and effective prevention strategies. Continued research, education, and
technological innovation are essential to reduce vision loss from this devastating infection and improve patient outcomes
globally.
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