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ABSTRACT 

The aim of this study was to evaluate the effect of subretinal injection of Schwann cells on preservation of retina by 
decreasing oxidative stress in Dystrophic Royal College of Surgeons (RCS) rats. Schwann cells were harvested from the 
sciatic nerve of postnatal day 5, RCS rats. Twenty-five RCS rats randomly assigned to cell and sham groups. Schwann cells 
injected in the sub-retinal space in one eye of the cell group and carrier medium was injected in one eye of the sham 
group. The proof for the appropriate site of injection of Schwann cells confirmed by the green fluorescent protein (GFP) 
positive cells. Electroretinogram (ERG) and enucleation for histopathology and enzymatic evaluation were performed 1, 
2 and 3 months post-injection. The enzymatic evaluation included catalase, superoxide dismutase (SOD) and glutathione 
peroxidase 1 (GPx1) by enzyme-linked immunosorbent assay (ELISA) method. Three months after injection, 
histopathology assessments showed a complete absence of the outer nuclear layer (ONL), photoreceptors and obvious 
reduction of retinal pigment epithelium (RPE) in the sham group. Cell group showed marked preservation of RPE, 
choroidal congestion and mild presence of ONL. The green fluorescent protein positive Schwann cells remained in one 
integrated layer during the study under RPE. The enzymatic evaluation showed that in cell group expression of SOD and 
GPx1 until month 2 and catalase until month 1 were significantly more than the sham group. At the end of month 3, the 
amplitude of ERG waves significantly preserved in cell group in comparison to baseline waves and the sham group. We 
concluded that Schwan cells are able to preserve retinal in RCS rats by reducing oxidative stress. 

KEY WORDS 

Schwann Cells; Oxidative Stress; Retina;  Electroretinogram; ELISA 

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons 
Attribution-Non Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which 
permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited. 

Correspondence to: Raziyeh Mahmoudzadeh MD, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, 

Tehran, Iran. E-mail: razieh.mah@gmail.com 

How to cite this article: Lashay A, Mahmoudzadeh R, Heidari Keshel S, Naderi A, Omidi R, Asadi Amoli F. Role of Schwann Cells in 

Preservation of Retinal Tissue Through Reduction of Oxidative Stress. Med Hypothesis Discov Innov Ophthalmol. 2019 Winter 8(4): 323-332. 

INTRODUCTION

A common feature of retinal degenerative disease like 
retinitis pigmentosa (RP) and age-related macular 
degeneration (AMD) is early dysfunction of retinal 
pigment epithelium (RPE) and subsequent loss of rod 
function which is followed by death of cone 
photoreceptor cells [1-3]. AMD is the uppermost cause of 

blindness in elderly and this is gaining more attention 
because the world is experiencing growth in number and 
proportion of aged people [4]. It is estimated that 3 
million elderly people in the United States will have 
advanced stages of AMD by 2020 [5]. It is proven that 
oxidative stress is a major predisposing factor for AMD 
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[6, 7]. Aging and environmental factors like sunlight 
exposure and smoking, increase oxidative stress [8, 9]. 
The beneficial outcome of dietary intake of antioxidants 
supplementation (vitamin C, vitamin E and carotene) and 
zinc to slow the progression of AMD is shown in several 
studies [10]. In experimental models, the delivery of 
growth factors, gene therapy and cell-based therapy can 
lower the progression rate of AMD and RP [11-14]. A 
major problem for cell transplantation is the need for 
immunosuppression because these allogenic cell grafts 
are prohibited by the host immune system in animal 
studies [15]. 
Schwann cells have a critical role in the preservation and 
renewal of axons of the neurons in the peripheral 
nervous system (PNS) and secrete different growth 
factors including glial cell line-derived neurotrophic 
factor (GDNF) for trophic support of damaged neurons 
and developing neurons [16]. Schwann cells can support 
neuronal repair after injury in the central nervous system 
including spinal cord injury and retinal degenerative 
disease. Royal College of Surgeon (RCS) rats have an 
alteration in the receptor tyrosine kinase gene which 
prevents RPE cells from phagocytosing outer segments of 
rod cells and results in rod death later [17-20]. RSC rats 
have normal photoreceptors at birth but changes in 
photoreceptor nuclei are identified at days 22 and 25 and 
obvious signs of apoptotic death happen [21]. At day 60 
the regular pairing of presynaptic and postsynaptic 
indicators was completely lost [22]. 
Syngeneic transplantation is possible for Schwann cells, 
as they can be harvested and transplanted to genetically 
identical host and this procedure eliminates the need for 
immunosuppression [23]. Previous studies have shown 
that syngeneic subretinal transplantation of Schwann 
cells can support photoreceptor survival by secreting 
growth factors such as ciliary neurotrophic factor (CNTF), 
GDNF and brain-derived neurotrophic factor (BDNF) [24-
26]. On the other hand it is shown that Schwann cells can 
reduce oxidative stress in PNS [27]. So we hypothesized 
that another mechanism for the supportive role of 
Schwann cells in the retina can be due to oxidative stress 
reduction [28]. 
The aim of this study was to evaluate the role of 
oxidative stress pathway in retinal degeneration in RCS 
rats and evaluation of subretinal injection of autologous 
Schwann cells, using electroretinogram (ERG) and tissue 
analysis. The Schwann cells were transplanted at an early 
age before the oxidative stress level was so high to 
destroy significant numbers of photoreceptors. 

 

 

METHODS 

Animals  
Twenty-five pigmented dystrophic RCS rats (Rooyan 
institute, Tehran, Iran) were used in the study in 2017. 
Animals were kept in rooms with a 12-hour dark/12-hour 
light cycle, with ad libitum food and water and constant 
temperature of 22°C. Animals were kept and handled 
with the approval of the Institutional Animal Care and an 
ethical approval was obtained from the Ethics Committee 
of Tehran University of Medical Sciences. Because the 
dystrophic changes start from day 22 and complete 
destroy lasts up to day 120 [21, 22], the enucleation was 
performed at baseline and at 1, 2 and 3 months after cell 
transplantation for enzymatic and histopathologic 
analysis. There were at least 3 rats in each group for 
different evaluations. 

Preparation of Schwann Cells 
Primary Schwann cells (SCs) harvested from sciatic 
nerves of 5-day-old RCS rat according to earlier described 
methods [29, 30]. Sciatic nerves were divided and 
transferred to Leibowitz L15 medium (Sigma-Aldrich St. 
Louis, MO, USA)and contaminating tissue removed. The 
nerves were cut into 100-micrometer (µm) pieces and 
placed in McIlwain tissue chopper (The Mickle Laboratory 
Engineering, Brinkmann). The pieces then digested in a 
mixture of collagenase/trypsin for 90 minutes at the 
temperature of 37°C. Ten percent fetal calf serum 
(DMEMF) and Dulbecco modified Eagle medium (Sigma-
Aldrich, St. Louis, MO, USA) used for stopping digestion. 
The digested tissue was centrifuged at 1000 Revolutions 
Per Minute (RPM) for 5 minutes. After re-suspend and 
titration the harvested cells were put over poly L-lysine–
coated 35-millileter (mm) dishes in DMEMF. Other 
agents including Amphotericin B, pyruvate, glutamine, 
penicillin-streptomycin were added and incubated at 
37°C 5% CO2. After 24 hours, the medium was changed 
to eliminate unattached cells and debris. One week later, 
cells were detached from the dish with trypsin-EDTA and 
incubated at 37°C in a 100 mm [26] dish coated with 
rabbit anti-rat IgG beforehand. Cells were ready for 
transplantation within 24 to 48 hours. All samples were 
studied using an Invert microscope (CETI fluorescent 
microscope, UK). Specific markers such as P75 assessed 
by flow cytometry (Becton-Dickinson, San Jose, CA) and 
S100 (Sigma-Aldrich,St. Louis, MO, USA), glial fibrillary 
acidic protein (GFAP) (Sigma-Aldrich,St. Louis, MO, USA) 
by immunocytochemistry method were used for 
identification of Schwann cells. The less adherent nature 
of Schwann cells to the dish and their rapid movement in 
suspension with distinct morphology made their 
separation from fibroblasts easy. Finally, syngeneic 
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Schwann cells were collected from dystrophic RCS and 
marked with a green fluorescent protein (GFP) (Thermo 
Fisher Scientific) for tracking the cells after injection. 

Transplantation Procedure 
On a postnatal day 21, before the occurrence of any 
retinal dystrophic changes in RCS rats [21], all animals 
were anesthetized with the aid of ketamine-xylazine 
mixture (100/10 mg/kg). One eye of each rat received a 
subretinal injection of GFP positive Schwann cells (n=10), 
(3 ×10

4
 cells in 2 microliters [µL] of medium) or it had 

sham injections (n=10) (2 µL of DMEM + DNase). Grafts 
were introduced transsclerally into the superior quadrant 
of the one eye and nonsurgical eyes considered as the 
control group. Fine glass capillary attached by tubing to a 
10-µL Hamilton syringe (Wilmad, Reno, NV) used for 
subretinal injections. All eyes were examined by indirect 
ophthalmoscopy (Keeler company, Malvern, PA USA) 
after injection and any eye showing signs of retinal 
damage due to injection was eliminated from the study. 
Anterior chamber (AC) paracentesis was performed 
before any injection to avoid increase of intraocular 
pressure. 

Tissue Processing and Histopathologic Study 
Before enucleation at any time (month 1 or 2 or 3 post-
injection), the superior edge of the eye was marked. 
Once animals anesthetized with a maximal dose of 
ketamine-xylazine mixture (Sigma-Aldrich, St. Louis, MO, 
USA), enucleation was performed and immediately after 
that, animals were put in CO box to expire. For 
assessment of autofluorescence of GFP positive cells, a 
frozen section (Cryostat, Leica Buffalo Grove, USA) 
immediately provided from enucleated eye specimens 
and examined by a fluorescence microscope (Olympus 
IX81, Tokyo, Japan) armed with a camera. The remained 
specimens were placed in 10% formalin and incubated 
overnight at room temperature for fixation. After tissue 
processing paraffin blocks were prepared and 4-µm 
tissue sections stained by further Hematoxylin and 
eosin (H&E) method observed by light microscope 
(Olympus BX41. Japan). Histopathological study in retina 
included changes in full thickness of retina including 
inner and outer nuclear layers (INL and ONL), RPE and 
photoreceptor layers and ganglion cells layer (GCL). 
ERG (Metrovision, France) recordings were performed at 
1, 2 and 3-months post injection by the 
electrophysiological test unit (Metrovision, France). RCS 
rats were kept in darkness at nights and prepared under 
faint red light. Before performing the test, animals were 
anesthetized with the mixture of ketamine and xylazine 
(100/10 mg/kg). Tropicamide (1%) (Sina-darou, Tehran, 
Iran) and topical anesthesia (0.5% tetracaine 

hydrochloride); (Sina-darou, Tehran, Iran) was used to 
dilate the pupils. To prevent the corneal dehydration, 
0.9% saline drops applied regularly on the corneal 
surface. Goldring recording electrode (4mm, Roland 
Consult, Brandenburg, Germany), registered the 
electrical response of the retina. The main recording 
electrode was set on the corneal surface and the 
reference electrode was inserted inside the forehead. 
The ground electrode was positioned on the tail. Eight 
light stimuli with 125 candela per square metre (cds/m2) 
were used to record the scotopic ERG. The a-wave and b-
wave amplitudes were averaged from three responses 
with stimulus intervals of 15 millisecond (ms).  

Enzyme Assessment 
Superoxide dismutase (SOD), catalase and glutathione 
peroxidase1 (GPX1) are antioxidant enzymes that protect 
the retina from oxidative damage, and all three enzymes 
are found in the photoreceptors and in the RPE [31-34]. 
The enzyme activities were assessed with enzyme-linked 
immunosorbent assay (ELISA) kits, 1, 2, and 3 months 
post injection according to the manufacturer’s protocols 
(Abnova, Taiwan).  

Statistical Analyses  
Data expressed as mean ± standard error of the mean 
(SEM). IBM SPSS Statistics (version 24, IBM Corp., 
Armonk, NY) was used for statistical analyses. A one-way 
ANOVA, followed by Tukey test was used to identify 
significant differences between the groups. P value <0.05 
was considered statistically significant. All graphs were 
made by GraphPad Prism software (version 6, GraphPad 
Software, La Jolla California USA,). 

RESULTS 

Histopathology 
The histopathologic features of RCS retina before the 
start of degenerative process is shown (Figure 1). One 
month after injection in the cell and sham groups, the 
RPE layer decreased in both groups but the decrease in 
cell group was less than the sham group (Figure 2). 

 
Figure 1. Normal Retina of Royal College of Surgeons (RCS) Rat  
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Two months after the injection reduction of ONL, 
photoreceptors and RPE layer was evident in the both 
groups but in the cell group, RPE was more preserved 
(Figure 3). After 3 months, there was a complete absence 
of ONL and photoreceptors, obvious reduction of RPE 
and mild reduction of the INL in the sham group, but in 
the cell group, mild presence of ONL and marked 
preservation of RPE and choroidal congestion was 
evident (Figure 4). 

The fluorescence microscope showed constant 
preservation of GFP positive Schwann cells in the retina 
after 3 months of injection in cell group (Figure 5). GFP 
positive Schwann cells are shown before injection and 
after injection as an integrated monolayer of Schwann 
cells in the retina. These findings indicate that these cells 
are compatible with retinal tissue. 
 

 
Figure 2. One Month after Injection Retinal Pigment Epithelium (RPE) Reduction is Evident in both Groups but Cell Group has less RPE Reduction. The 
Left Picture (A) shows the Sham and the Right Picture (B) shows the Cell Groups. 

 
 

 
Figure 3. Two Months after Injection. There is outer Nuclear (ONL), Photoreceptors and Retinal Pigment Epithelium (RPE) Layer Reduction in the both 
Groups but RPE is more preserved in the Cell Group. The Left Picture shows Sham (A) and the Right Picture (B) shows the Cell Groups. 
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Figure 4. Three Months after Injection. There is a Complete Absence of Outer Nuclear and Photoreceptors Layer along with Obvious Reduction of 
Retinal Pigment Epithelium (RPE) and Mild Reduction of the Inner Nuclear Layer in the Sham Group (A). Cell Group (B) has a Mild Presence of Outer 
Nuclear Layer and marked Preservation of RPE Layer associated with Choroidal Congestion.  
 

 
Figure 5. Stability and Integrity of Green Fluorescent Protein (GFP) Positive Schwann Cells after Subretinal Injection in Royal College of Surgeons (RCS) 
Rats over different Times in Cell Group. 

 

Enzyme Assessment 
SOD activity in the cell and sham groups after injection is 
shown in Figure 6. One month after injection the sham 
group (mean ± standard deviation [SD](; 56.66 ± 4.04 %) 
had significantly lower enzyme activity which is shown 
based on percentage of inhibition, in comparison to cell 
group (mean ± SD; 88.33 ± 8.32 %) and baseline group 
(mean ± SD; 91.00 ± 2.64 %), (P-value =0.00 in both 
comparisons). In month 2 post-injection both sham and 
cell groups had lower inhibition activity than the baseline 
group, but only the sham group (mean ± SD; 56.66 ± 4.04 
%) had statistically significant decrease from baseline 
group (mean ± SD; 91.00 ± 2.64 %), (P-value = 0.01) . In 
month 3 both cell (mean ± SD; 88.66 ± 8.06 %) and sham 
groups (mean ± SD; 85.00 ± 5.00 %) showed similar 
inhibition activities to baseline (91.00 ± 2.64 %) and each 
other, (P-value = 1.00). 
GPX1 activity in cell and sham groups is shown in Figure 
7. One month after injection enzyme level in cell group 

(mean ± SD; 4.58 ± 0.85 ng/ mg) was higher than sham 
(mean ± SD; 3.21 ± 0.29 ng/ mg), (P-value = 0.02) and 
baseline (mean ± SD; 2.77 ± 0.24 ng/ mg) groups, (P-
value =0.00). After 2 months the enzyme level increased 
to (mean ± SD; 5.66 ± 0.33 ng/ mg) in cell group which 
was significantly higher than baseline (mean ± SD; 2.77 ± 
0.24 ng/ mg) and sham group (mean ± SD; 3.16 ± 0.19 
ng/ mg), (P-value =.00 in both comparisons). At month 3, 
cell group enzyme activity (mean ± SD; 3.51 ± 0.32 ng/ 
mg) decreased to the level of sham (mean ± SD; 3.70 ± 
0.27 ng/mg) and baseline groups (mean ± SD; 2.77 ± 0.24 
ng/ mg) and there was no significant difference between 
the groups.  
Catalase activity is shown in Figure 8. One month after 
injection the catalase activity in cell group (mean ± SD; 
20.84 ± 1.87 nanomoles per milligram [nmol/ mg]) was 
significantly higher than sham (mean ± SD; 12.30 ± 0.60 
nmol/ mg) and baseline (mean ± SD; 15.53 ± 1.55 nmol/ 
mg) groups (P-value =0.00 in both comparisons). At 
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month 1 the sham group (mean ± SD; 12.30 ± 0.60 nmol/ 
mg) also showed significantly decreased activity than the 
baseline (mean ± SD; 15.53 ± 1.55 nmol/ mg), (P-value = 
0.02). Surprisingly in months 2 and 3 the activity level of 
cell group dropped dramatically and was significantly 
lower than the sham and baseline groups. In month 2 the 
cell group activity was (mean ± SD; 6.41 ± .47 nmol/mg) 
which was lower than sham (mean ± SD; 10.73 ± .45 
nmol/mg) and baseline group (mean ± SD; 15.53 ± 1.55 
nmol/mg) (P-value=0.002 and 0.00, respectively). At the 
same month the activity of sham group was also 
significantly lower than baseline group (P-value=0.001). 
In month 3, the cell group (mean ± SD; 5.06 ± .29 nmol/ 
mg) had significantly lower enzyme activity than the 
sham group (mean ± SD; 18.73 ± .24 nmol/ mg) and 
baseline group (mean ± SD; 15.53 ± 1.55 nmol/ mg) (P-
value=0.00 in both comparisons). The sham group at 
month 3 (mean ± SD; 18.73 ± .24 nmol/ mg) also had 
significantly higher enzyme activity than baseline (mean 
± SD; 15.53 ± 1.55 nmol/ mg) and cell groups (mean ± SD; 
5.06 ± .29 nmol/ mg), (P-value 0.02 and 0.00, 
respectively). 

Electroretinogram 
The scotopic ERGs were recorded from RCS rats in sham 
and cell-treated groups before transplantation and at 
months 1, 2 and 3 after transplantation (Figure 9, Table 
1). The changes in amplitude of a wave and b wave in the 
cell (treatment) and sham group in the injected eye over 
time is shown in Table 1. 
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Figure 6. Superoxide Dismutase (SOD) Inhibitional Activity in the 
Retina of Royal College of Surgeons (RCS) Rats in Cell and Sham 
Groups following Injection. Data expressed as means ± Standard 
Deviation (SD). * different from Sham (p-value < 0.05); # different 
from Baseline, (p-value < 0.05). Note: %: Percentage; min: Minutes; 
Cell: Cell Group; Sham: Sham Group. 

 

 
Figure 7. Glutathione Peroxidase1 (GPX1) Activity in the Retina of 
Royal College of Surgeons (RCS) Rats in Cell and Sham Groups 
following Injection. Data expressed as Means ± Standard Deviation 
(SD). * different from Sham (p-value < 0.05); # different from Baseline, 
(p-value < 0.05). Note: ng/mg: nanogram per milligram; cell: Cell 
Group; Sham: Sham Group. 
 

One month after treatment, the a wave was significantly 
lower in cell group (mean ± SD; -7.06 ± 1.56 microvolts 
[μv]( in comparison to a wave in baseline group (mean ± 
SD; -15.95 ± 2.76 μv( (P-value < 0.05). B wave amplitude 
was also significantly lower (mean ± SD; 10.07 ± 3.63 μv( 
in comparison to sham (mean ± SD; 28.30 ± 5.46 μv( and 
baseline groups (mean ± SD; 30.52 ± 4.33 μv( (P-value < 
0.05 for both). 
 

Figure 8. Catalase Activity in the Retina of Royal College of Surgeons 
(RCS) Rats in Cell and Sham Groups following Injection. Data 
expressed as Means ± Standard Deviation (SD). * different from Sham 
(p-value < 0.05); # different from Baseline, (p-value < 0.05). Note: 
nmol/mg: nanomoles per milligram; cell: Cell Group; Sham: Sham 
Group. 
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Figure 9. Scotopic Electroretinograms (ERGs) recorded from Royal 
College of Surgeons (RCS) Rats in Sham and Cell-treated Groups 
before Transplantation and at Month 1, 2 and 3 after Transplantation. 
Horizontal Calibration: 50 millisecond (ms). Vertical Calibration: 50 
microvolts (μv). Note: a: a-wave; b: b-wave; cell: Cell Group; Sham: 
Sham Group. 
 
In month 2, both a and b waves in cell groups (mean ± 
SD; -12.73 ± 1.13 μv and 37.43 ± 7.23 μv, respectively( 

had no statistically significant difference with those of 
the baseline group (mean ± SD; -15.95 ± 2.76 μv and 
30.52 ± 4.33 μv, respectively( and the sham group (mean 
± SD; -8.6 ± 2.30 μv and 21.13 ± 7.07 μv respectively( but 
the cell group had higher amplitude in both a and b 
waves than sham group and in b wave than baseline. In 
month 3 the sham group had very significant low 
amplitude in both a and b waves (mean ± SD; -6.30 ± 1 μv 
and 8.90 ± 1.20 μv, respectively ( in comparison to 
baseline (mean ± SD; -15.95 ± 2.76 μv and 30.52 ± 4.33 
μv respectively( (P-value < 0.05), but cell group had a 
higher amplitude in both a and b waves than sham group 
(mean ± SD; -12.23 ± 3.77 and 18.67 ± 4.01 μv, 
respectively), which were not statistically different from 
baseline (mean ± SD; -15.95 ± 2.76 μv and 30.52 ± 4.33 
μv, respectively(. 
 

 
Table 1. Comparison of a-wave and b-wave Amplitude between Cell and Sham Groups in the Injected Eye 

 Baseline 1-month 2-month 3-month 

Groups  Sham Group Cell Group Sham Group Cell Group Sham Group Cell Group 

a-wave Amplitude (μv) -15.95 ± 2.76 -9.63 ± 2.91 -7.06 ± 1.56 # -8.6 ± 2.30 -12.73 ± 1.13 -6.30 ± 1 # -12.23 ± 3.77 

b-wave Amplitude (μv) 30.52 ± 4.33 28.30 ± 5.46 10.07 ± 3.63 *# 21.13 ± 7.07 37.43 ± 7.23 8.90 ± 1.20 # 18.67 ± 4.01 
Data are presented as Mean ± SD; n= 3-9 eyes in each group 
Abbreviations: n:number; μv: microvolts; SD: standard deviation; * different from sham (p- value < 0.05), # different from baseline (P-value < 0.05). 

 
DISCUSSION 

This study confirmed the previous studies that showed a 
protective effect of Schwann cells on RCS retina which 
can be in part due to reduction of oxidative stress level in 
the retina. The findings were confirmed by enzymatic, 
electrophysiological and histopathological studies. In 
2007 McGill et al. reported that syngeneic subretinal 
Schwann cell can be a preventive treatment option for 
retinal degenerative disease. The syngeneic 
transplantation eliminates the need for 
immunosuppression and can be harvested easily [30]. 
The exact mechanism by which Schwann cells can 
prevent the progression of retinal degenerative disease is 
unknown but the role of growth factors have been 
highlighted so far [35]. According to previous studies that 
showed the ability of Schwann cells to increase the 
antioxidant defense mechanisms and reduction of 
oxidative stress in PNS [27], we investigated this pathway 
in the retina. This study showed that syngeneic subretinal 
Schwann cell retinal transplantation into the dystrophic 
RCS rat can preserve the tissue by activating antioxidant 
enzymes. The ELIZA study showed that enzyme activity is 
more prominent in the first two months post-injection 
[postnatal day 81]. Previous studies have shown that 
degeneration in RCS retina starts early in postnatal day 

25 and the most devastating cascades for degeneration 
are completed at postnatal day 90-120 [21, 22]. We 
transplanted Schwann cell at postnatal day 21, before 
the beginning of degeneration process. Enzymatic 
assessments showed that two months after injection 
SOD and GPX1 levels were significantly higher than sham 
and baseline groups. Catalase activity was also 
significantly higher in the first-month post injection. This 
finding indicates that up to 90 days postnatal the 
Schwann cells can still overcome oxidative stress by 
enhancing enzyme expression but later the cells are 
unable to stop oxidative stress.  
Pathologic findings showed promising results. The RPE as 
a critical layer in the retina for the elimination of 
oxidative stress remained better in cell group. This layer 
can support the photoreceptors and structure of the 
retina. The ONL was completely absent 3 months after 
injection in the sham group but in a cell group, this layer 
was visible with bridge-like connections with RPE layer. It 
was shown that Schwann cells can prolong 
photoreceptor survival time as well [36]. Another 
important outcome was permanent subretinal presence 
of Schwann cells which can be a promising finding to 
show that these cells are likely to be compatible with the 
retina. Although there are other treatment regimens for 
retinal degenerative diseases like retinal progenitors 
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derived from embryonic stem cell (ESC) and induced 
pluripotent stem cell (iPSC), but Schwann cells are 
immune privilege for retina and secrete different growth 
factors to rescue the remaining photoreceptors cells [36]. 
Cell group showed preservation of ONL while the sham 
group lost ONL at the same time. This feature may help 
researchers to use Schwann cells as complementary 
agents for maintenance of retinal structure, secretion of 
growth factors and reduction of oxidative stress. 
ERG results showed a temporary decrease in cell group 
one month after injection, which might be due to 
inflammatory response of the retina to newly introduced 
cells. As time passes, the sham group showed more 
reduction of ERG waves while the cell group retained 
better function. This finding helped us to show the better 
function of retinal layers in the cell group. The ability of 
Schwann cells to preserve vision was formerly shown by 
visual behavior tasks, by the aid of optokinetic response 
(OKR) [30].  
This study had some limitations including the low 
number of RCS rats studied and absence of behavioral 
tests. The strengths of study were understanding of 
oxidative stress pathways by which Schwann cells can 
preserve retina and reinforce other pathways to enhance 
the effect of cell-based therapies. We also suggest 
further direction by combination of Schwann cells with 
other cell-based therapies to enhance preventive and 
therapeutic effects in retinal degenerative disease.  

CONCLUSIONS 

In conclusion our study showed that Schwan cells were 
able to preserve retina in RCS rats by reducing the 
oxidative stress pathway. This preservation effect was 
shown by expression of anti-oxidative enzymes, 
electroretinogram recordings and histopathological 
studies. 
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