IVORC
  • Register
  • Login

Medical hypothesis, discovery & innovation in optometry

  1. Home
  2. Archives
  3. Vol. 4 No. 2 (2023): Summer 2023
  4. Articles

About the Journal

Editorial Team

Privacy Statement

Contact

A practical clinical approach to traumatic choroidal rupture

  • Omer Ozer

Medical hypothesis, discovery & innovation in optometry, Vol. 4 No. 2 (2023), 22 June 2023 , Page 76-82
https://doi.org/10.51329/mehdioptometry176 Published 22 June 2023

  • View Article
  • Download
  • References
  • Share

Abstract

Background: Traumatic choroidal rupture is a posterior segment manifestation of trauma and is more common in closed-globe injuries. It is defined as a tear of the choroid and Bruch’s membrane following blunt trauma. This narrative review summarizes the current literature and provides a practical clinical approach to the diagnosis and management of traumatic choroidal rupture and its complications.
Methods: In this narrative review, we searched the PubMed/MEDLINE database using the search term choroidal rupture to provide a practical and updated approach to traumatic choroidal rupture, focusing on its definition, etiology, diagnosis, imaging, management of complications, and prognosis as mentioned in the literature over the last two decades.
Results: Traumatic choroidal rupture occurs due to increased tensile stress on the eye wall and is three-fold more common in closed-globe injuries than in open injuries. Subretinal or sub-retinal pigment epithelial hemorrhage and macular edema are early signs. Macular involvement is associated with poor visual prognosis. Damage to Bruch’s membrane increases the risk of subretinal choroidal neovascular membrane (CNVM). Traumatic epiretinal membrane is another complication. Imaging modalities such as spectral-domain optical coherence tomography, indocyanine green angiography, conventional fundus fluorescein angiography, and optical coherence tomography angiography (OCT-A) can be used in diagnosis or monitoring for complications. OCT-A offers unique opportunities for the diagnosis, treatment, and follow-up of both the initial presentation and possible complications. Frequent follow-up has been suggested in the first year after trauma. Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injection is effective and less invasive in managing CNVM. The visual outcome depends on the location of the rupture, baseline visual acuity, and presence of optic atrophy or macular holes. Risk factors for developing CNVM include rupture involving the macula, longer rupture length or rupture closer to the foveal center, and older age.
Conclusions: Choroidal rupture is a posterior segment entity that usually occurs after trauma, compromises choroidal vessels and Bruch’s membrane, and can lead to CNVM. The use of novel noninvasive imaging modalities and efficient anti-VEGF therapy to manage this entity or its subsequent complications produces better visual outcomes. Early diagnosis and frequent follow-up of these patients allow treatment of possible complications, thereby improving the visual prognosis.
Keywords:
  • blunt injury
  • choroid
  • rupture
  • choroidal disease
  • VEGFs
  • intraocular injection
  • choroid neovascularization
  • fluorescence angiography
  • optical coherence tomography
  • angiography
  • Full Text PDF

References

Youssri AI, Young LH. Closed-globe contusion injuries of the posterior segment. Int Ophthalmol Clin. 2002;42(3):79-86. doi: 10.1097/00004397-200207000-00010 pmid: 12131585

Chen HJ, Feng K, Feng XF, Wang CG, Ma ZZ. Traumatic choroidal injuries - classification, incidence, diagnosis and prognosis twenty-year results of Eye Injury Vitrectomy Study. Acta Ophthalmol. 2021;99(3):e387-e393. doi: 10.1111/aos.14578 pmid: 33124167

Venkatesh R, Bavaharan B, Yadav NK. Predictors for choroidal neovascular membrane formation and visual outcome following blunt ocular trauma. Ther Adv Ophthalmol. 2019;11:2515841419852011. doi: 10.1177/2515841419852011 pmid: 31206099

Shin JY, Chung B, Na YH, Lee J, Chung H, Byeon SH. Retinal pigment epithelium wound healing after traumatic choroidal rupture. Acta Ophthalmol. 2017;95(7):e582-e586. doi: 10.1111/aos.13300 pmid: 27778461

Pierro L, Giuffrè C, Rabiolo A, Gagliardi M, Arrigo A, Bandello F. Multimodal Imaging in a Patient with Traumatic Choroidal Ruptures. Eur J Ophthalmol. 2017;27(6):e175-e178. doi: 10.5301/ejo.5001005 pmid: 28708222

Benillouche J, Astroz P, Ohayon A, Srour M, Amoroso F, Pedinielli A, et al. Optical coherence tomography angiography imaging of choroidal neovascularization secondary to choroidal rupture treated by intravitreal ranibizumab. Retin Cases Brief Rep. 2022;16(2):222-225. doi: 10.1097/ICB.0000000000000932 pmid: 31652192

Tripathy K, Salini B. Amsler Grid. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. pmid: 30844168

Harissi-Dagher M, Sebag M, Gauthier D, Marcil G, Labelle P, Arbour JD. Photodynamic therapy in young patients with choroidal neovascularization following traumatic choroidal rupture. Am J Ophthalmol. 2005;139(4):726-8. doi: 10.1016/j.ajo.2004.10.009 pmid: 15808180

Ament CS, Zacks DN, Lane AM, Krzystolik M, D'Amico DJ, Mukai S, et al. Predictors of visual outcome and choroidal neovascular membrane formation after traumatic choroidal rupture. Arch Ophthalmol. 2006;124(7):957-66. doi: 10.1001/archopht.124.7.957 pmid: 16832018

Barth T, Zeman F, Helbig H, Gamulescu MA. Intravitreal anti-VEGF treatment for choroidal neovascularization secondary to traumatic choroidal rupture. BMC Ophthalmol. 2019;19(1):239. doi: 10.1186/s12886-019-1242-7 pmid: 31771544

Finn AP, Fujino D, Lum F, Rao P. Etiology, Treatment Patterns, and Outcomes for Choroidal Neovascularization in the Pediatric Population: An Intelligent Research in Sight (IRIS®) Registry Study. Ophthalmol Retina. 2022;6(2):130-138. doi: 10.1016/j.oret.2021.05.015 pmid: 34091079

Adhi M, Reinoso M. Spontaneous regression and quiescence of choroidal neovascularization secondary to traumatic choroidal rupture depicted on OCT angiography. Eur J Ophthalmol. 2021:11206721211059030. doi: 10.1177/11206721211059030 pmid: 34787002

Pujari A, Chawla R, Agarwal D, Gagrani M, Kapoor S, Kumar A. Pathomechanism of traumatic indirect choroidal rupture. Med Hypotheses. 2019;124:64-66. doi: 10.1016/j.mehy.2019.02.010 pmid: 30798919

Patel MM, Chee YE, Eliott D. Choroidal rupture: a review. Int Ophthalmol Clin. 2013;53(4):69-78. doi: 10.1097/IIO.0b013e31829ced74 pmid: 24088934

Nair U, Soman M, Ganekal S, Batmanabane V, Nair K. Morphological patterns of indirect choroidal rupture on spectral domain optical coherence tomography. Clin Ophthalmol. 2013;7:1503-9. doi: 10.2147/OPTH.S46223 pmid: 23901259

Lupidi M, Muzi A, Castellucci G, Kalra G, Piccolino FC, Chhablani J, et al. The choroidal rupture: current concepts and insights. Surv Ophthalmol. 2021;66(5):761-770. doi: 10.1016/j.survophthal.2021.01.014 pmid: 33545177

Weng CY, Beltran B. Choroidal Rupture Through the Fovea With Overlying Traumatic Epiretinal Membrane. JAMA Ophthalmol. 2019;137(2):e183971. doi: 10.1001/jamaophthalmol.2018.3971 pmid: 30763418

Moon K, Kim KS, Kim YC. A case of expansion of traumatic choroidal rupture with delayed-developed outer retinal changes. Case Rep Ophthalmol. 2013;4(2):70-5. doi: 10.1159/000354197 pmid: 24019789

Mennel S, Hausmann N, Meyer CH, Peter S. Photodynamic therapy and indocyanine green guided feeder vessel photocoagulation of choroidal neovascularization secondary to choroid rupture after blunt trauma. Graefes Arch Clin Exp Ophthalmol. 2005;243(1):68-71. doi: 10.1007/s00417-004-0964-1 pmid: 15660279

Yadav NK, Bharghav M, Vasudha K, Shetty KB. Choroidal neovascular membrane complicating traumatic choroidal rupture managed by intravitreal bevacizumab. Eye (Lond). 2009;23(9):1872-3. doi: 10.1038/eye.2008.370 pmid: 19079144

Petrarca R, Saldana M. Choroidal rupture and optic nerve injury with equipment designated as 'child-safe'. BMJ Case Rep. 2012;2012:bcr2012006476. doi: 10.1136/bcr-2012-006476 pmid: 22927278

Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA. Optical coherence tomography of the retina and optic nerve - a review. Clin Exp Ophthalmol. 2009;37(1):90-9. doi: 10.1111/j.1442-9071.2009.02015.x pmid: 19338607

Gupta S, Zivadinov R, Ramanathan M, Weinstock-Guttman B. Optical coherence tomography and neurodegeneration: are eyes the windows to the brain? Expert Rev Neurother. 2016;16(7):765-75. doi: 10.1080/14737175.2016.1180978 pmid: 27138997

Souza-Santos F, Lavinsky D, Moraes NS, Castro AR, Cardillo JA, Farah ME. Spectral-domain optical coherence tomography in patients with commotio retinae. Retina. 2012;32(4):711-8. doi: 10.1097/IAE.0b013e318227fd01 pmid: 22105503

Oehrens AM, Stalmans P. Optical coherence tomographic documentation of the formation of a traumatic macular hole. Am J Ophthalmol. 2006;142(5):866-9. doi: 10.1016/j.ajo.2006.05.060 pmid: 17056374

Cornut T, Seguy C, Rougier MB, Delyfer MN, Morillon C, Korobelnik JF. Ruptures traumatiques multiples de la membrane de Bruch en imagerie multimodale [Multimodal imaging in multiple traumatic choroidal ruptures]. J Fr Ophtalmol. 2018;41(7):676-678. French. doi: 10.1016/j.jfo.2017.11.034 pmid: 30166234

Lorusso M, Micelli Ferrari L, Nikolopoulou E, Micelli Ferrari T. Optical Coherence Tomography Angiography Evolution of Choroidal Neovascular Membrane in Choroidal Rupture Managed by Intravitreal Bevacizumab. Case Rep Ophthalmol Med. 2019;2019:5241573. doi: 10.1155/2019/5241573 pmid: 30723562

Souedan V, Souied EH, Caillaux V, Miere A, Ameen AE, Blanco-Garavito R. Sensitivity and specificity of optical coherence tomography angiography (OCT-A) for detection of choroidal neovascularization in real-life practice and varying retinal expertise level. Int Ophthalmol. 2018;38(3):1051-1060. doi: 10.1007/s10792-017-0559-6 pmid: 28547533

Preziosa C, Corvi F, Pellegrini M, Bochicchio S, Rosar AP, Staurenghi G. Optical coherence tomography angiography findings in a case of choroidal neovascularization secondary to traumatic choroidal rupture. Retin Cases Brief Rep. 2020;14(4):339-342. doi: 10.1097/ICB.0000000000000704 pmid: 29553995

Saraswat NK, Samanta R, Puthalath AS, Luthra S, Sood G, Mittal SK. Optical coherence tomography angiography-guided diagnosis of a traumatic choroidal rupture-associated choroidal neovasular membrane and its management with intravitreal ranibizumab. Taiwan J Ophthalmol. 2020;11(3):300-304. doi: 10.4103/tjo.tjo_40_20 pmid: 34703748

Rezaei KA, Zhang Q, Kam J, Liu J, Wang RK. Optical coherence tomography based microangiography as a non-invasive imaging modality for early detection of choroido-neovascular membrane in choroidal rupture. Springerplus. 2016;5(1):1470. doi: 10.1186/s40064-016-3161-x pmid: 27652045

Lee JE, Choi HY, Lee JS, Oum BS. Posterior segment injury developed after injection of anesthetics on eyelids with needleless jet injection device. Graefes Arch Clin Exp Ophthalmol. 2007;245(1):173-5. doi: 10.1007/s00417-006-0309-3 pmid: 16633796

Kohno T, Miki T, Shiraki K, Kano K, Hirabayashi-Matsushita M. Indocyanine green angiographic features of choroidal rupture and choroidal vascular injury after contusion ocular injury. Am J Ophthalmol. 2000;129(1):38-46. doi: 10.1016/s0002-9394(99)00273-1 pmid: 10653411

Rishi P, Gupta A, Rishi E, Shah BJ. Choroidal neovascularization in 36 eyes of children and adolescents. Eye (Lond). 2013;27(10):1158-68. doi: 10.1038/eye.2013.155 pmid: 23887767

  • Abstract Viewed: 0 times
  • Full Text PDF Downloaded: 0 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Make a Submission
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
© Copyright 2020-2025, CC BY-NC 4.0. All Rights Reserved.

Medical Hypothesis, Discovery & Innovation in Optometry
ISSN 2693-8391