Intrapapillary vessel density using optical coherence tomography angiography in primary open-angle glaucoma and normal eyes
Medical hypothesis, discovery & innovation in optometry,
Vol. 5 No. 2 (2024),
1 September 2024
,
Page 63-69
https://doi.org/10.51329/mehdioptometry199
Abstract
Background: Optical coherence tomography angiography (OCTA) is used to quantify optic nerve blood flow in patients with primary open-angle glaucoma (POAG). Intrapapillary vessel density (iVD) has a high diagnostic accuracy for differentiating healthy from glaucomatous eyes. We compared the iVD of patients with POAG with that of healthy controls in an Egyptian tertiary referral center.Methods: This cross-sectional study consecutively recruited patients with medically controlled POAG and age- and sex-matched healthy individuals. All study participants underwent a detailed medical history evaluation and comprehensive ophthalmic examination, with recording of the cup-to-disc ratio (C/D ratio) and intraocular pressure (IOP). Humphrey visual field evaluation using the standard 24-2 program was performed and global indices, including mean deviation (MD) and pattern standard deviation (PSD), were extracted. OCTA and spectral-domain (SD) OCT images were obtained. Average thickness of the retinal nerve fiber layer (RNFL) and thicknesses in the superior, inferior, nasal, and temporal quadrants were recorded. OCTA imaging was used to measure vessel density, and the automatically processed data for iVD were extracted.
Results: We included 86 eyes, 43 in the POAG and 43 in the healthy control group, with male predominance in both groups and mean (standard deviation [SD]) ages of 42.1 (9.4) and 39.3 (9.6) years, respectively. The two groups were comparable in terms of mean age, sex ratio, laterality of the included eyes, and mean IOP (all P > 0.05). The mean (SD) C/D ratio, MD, and PSD were significantly higher in the POAG group than in the control group (all P < 0.01). The mean (SD) average RNFL thickness and RNFL thicknesses in the four quadrants were significantly less in glaucomatous eyes than in healthy control eyes (all P < 0.05). Eyes with POAG had a significantly lower mean (SD) iVD than healthy control eyes (P < 0.01). Linear regression analysis revealed a significant positive correlation between iVD and average RNFL thickness (r = + 0.52; P < 0.001) and a significant negative correlation between iVD and PSD (r = - 0.31; P = 0.042) in eyes with POAG.
Conclusions: The structural, vascular, and functional parameters measured in this study deteriorated in eyes with POAG compared to controls. Significant circumpapillary RNFL thinning correlated well with reduced iVD in eyes with POAG. Similarly, a lower iVD detected using OCTA had a significant inverse correlation with PSD in the perimetry of eyes with POAG. Further studies with additional parameters and longer follow-up periods are required to verify our preliminary findings.
Keywords:
- optical coherence tomography
- optical coherence tomography angiography
- automated perimetry exam
- primary open angle glaucoma
- matched group
- intraocular pressures
- optic nerve head
- vascular density
References
1. George R, Panda S, Vijaya L. Blindness in glaucoma: primary open-angle glaucoma versus primary angle-closure glaucoma-a meta-analysis. Eye (Lond). 2022 Nov;36(11):2099-2105. doi: 10.1038/s41433-021-01802-9. Epub 2021 Oct 13. PMID: 34645961; PMCID: PMC9582001.
2. Grzybowski A, Och M, Kanclerz P, Leffler C, Moraes CG. Primary Open Angle Glaucoma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. J Clin Med. 2020 Mar 11;9(3):761. doi: 10.3390/jcm9030761. PMID: 32168880; PMCID: PMC7141380.
3. Matlach J, Bender S, König J, Binder H, Pfeiffer N, Hoffmann EM. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol. 2018 Dec 18;13:9-16. doi: 10.2147/OPTH.S186526. PMID: 30587914; PMCID: PMC6302802.
4. Miglior S, Bertuzzi F. Relationship between intraocular pressure and glaucoma onset and progression. Curr Opin Pharmacol. 2013 Feb;13(1):32-5. doi: 10.1016/j.coph.2012.09.014. Epub 2012 Oct 31. PMID: 23122026.
5. Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, Shi G, Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015 Sep;253(9):1557-64. doi: 10.1007/s00417-015-3095-y. Epub 2015 Aug 11. PMID: 26255817.
6. Hayreh SS. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res. 2001 Sep;20(5):595-624. doi: 10.1016/s1350-9462(01)00005-2. PMID: 11470452.
7. Venkataraman ST, Flanagan JG, Hudson C. Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma--a review. Microcirculation. 2010 Oct;17(7):568-81. doi: 10.1111/j.1549-8719.2010.00045.x. PMID: 21040122.
8. Toprak I, Yaylal? V, Yildirim C. Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma. Semin Ophthalmol. 2017;32(2):185-190. doi: 10.3109/08820538.2015.1046557. Epub 2015 Jul 6. PMID: 26146801.
9. Scuderi GL, Cesareo M, Perdicchi A, Recupero SM. Standard automated perimetry and algorithms for monitoring glaucoma progression. Prog Brain Res. 2008;173:77-99. doi: 10.1016/S0079-6123(08)01107-2. PMID: 18929103.
10. Lopez-Peña MJ, Ferreras A, Larrosa JM, Polo V, Pablo LE. Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography. J Glaucoma. 2011 Sep;20(7):422-32. doi: 10.1097/IJG.0b013e3181f7b121. PMID: 21278593.
11. Lavinsky F, Wu M, Schuman JS, Lucy KA, Liu M, Song Y, Fallon J, de Los Angeles Ramos Cadena M, Ishikawa H, Wollstein G. Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage? Ophthalmology. 2018 Dec;125(12):1907-1912. doi: 10.1016/j.ophtha.2018.05.020. Epub 2018 Jun 19. PMID: 29934267; PMCID: PMC6246816.
12. Tomita R, Rawlyk B, Sharpe GP, Hutchison DM, Shuba LM, Nicolela MT, Chauhan BC. Progressive Changes in the Neuroretinal Rim and Retinal Nerve Fiber Layer in Glaucoma: Impact of Baseline Values and Floor Effects. Ophthalmology. 2024 Jun;131(6):700-707. doi: 10.1016/j.ophtha.2023.12.032. Epub 2024 Jan 2. PMID: 38176444.
13. Rolle T, Dallorto L, Tavassoli M, Nuzzi R. Diagnostic Ability and Discriminant Values of OCT-Angiography Parameters in Early Glaucoma Diagnosis. Ophthalmic Res. 2019;61(3):143-152. doi: 10.1159/000489457. Epub 2018 Jun 28. PMID: 29953994.
14. Toshev AP, Schuster AK, Ul Hassan SN, Pfeiffer N, Hoffmann EM. Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma. J Glaucoma. 2019 Mar;28(3):243-251. doi: 10.1097/IJG.0000000000001184. PMID: 30624391.
15. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma. 2020 Apr;29(4):312-321. doi: 10.1097/IJG.0000000000001463. PMID: 32053551; PMCID: PMC7117982.
16. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018 May 18;11(5):835-843. doi: 10.18240/ijo.2018.05.20. PMID: 29862185; PMCID: PMC5957038.
17. Charlson ES, Sankar PS, Miller-Ellis E, Regina M, Fertig R, Salinas J, Pistilli M, Salowe RJ, Rhodes AL, Merritt WT 3rd, Chua M, Trachtman BT, Gudiseva HV, Collins DW, Chavali VR, Nichols C, Henderer J, Ying GS, Varma R, Jorgenson E, O'Brien JM. The primary open-angle african american glaucoma genetics study: baseline demographics. Ophthalmology. 2015 Apr;122(4):711-20. doi: 10.1016/j.ophtha.2014.11.015. Epub 2015 Jan 8. PMID: 25576993; PMCID: PMC4372490.
18. O'Brien JM, Salowe RJ, Fertig R, Salinas J, Pistilli M, Sankar PS, Miller-Ellis E, Lehman A, Murphy WHA, Homsher M, Gordon K, Ying GS. Family History in the Primary Open-Angle African American Glaucoma Genetics Study Cohort. Am J Ophthalmol. 2018 Aug;192:239-247. doi: 10.1016/j.ajo.2018.03.014. Epub 2018 Mar 17. PMID: 29555482; PMCID: PMC6064667.
19. Chun LY, Silas MR, Dimitroyannis RC, Ho K, Skondra D. Differences in macular capillary parameters between healthy black and white subjects with Optical Coherence Tomography Angiography (OCTA). PLoS One. 2019 Oct 9;14(10):e0223142. doi: 10.1371/journal.pone.0223142. PMID: 31596848; PMCID: PMC6785112.
20. Gunasegaran G, Moghimi S, Nishida T, Walker E, Kamalipour A, Wu JH, Mahmoudinezhad G, Zangwill LM, Weinreb RN. Racial Differences in the Diagnostic Accuracy of OCT Angiography Macular Vessel Density for Glaucoma. Ophthalmol Glaucoma. 2024 Mar-Apr;7(2):197-205. doi: 10.1016/j.ogla.2023.09.003. Epub 2023 Sep 30. PMID: 37783272.
21. Kumar H, Thulasidas M. Comparison of Perimetric Outcomes from Melbourne Rapid Fields Tablet Perimeter Software and Humphrey Field Analyzer in Glaucoma Patients. J Ophthalmol. 2020 Aug 22;2020:8384509. doi: 10.1155/2020/8384509. PMID: 32908686; PMCID: PMC7463344.
22. Eladawi N, Elmogy MM, Ghazal M, Helmy O, Aboelfetouh A, Riad A, Schaal S, El-Baz A. Classification of retinal diseases based on OCT Images. Front Biosci (Landmark Ed). 2018 Jan 1;23(2):247-264. doi: 10.2741/4589. PMID: 28930545.
23. Balasubramanian M, Bowd C, Vizzeri G, Weinreb RN, Zangwill LM. Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography. Opt Express. 2009 Mar 2;17(5):4019-36. doi: 10.1364/oe.17.004019. PMID: 19259243; PMCID: PMC2848174.
24. Banc A, Ungureanu MI. Normative data for optical coherence tomography in children: a systematic review. Eye (Lond). 2021 Mar;35(3):714-738. doi: 10.1038/s41433-020-01177-3. Epub 2020 Sep 14. PMID: 32929184; PMCID: PMC8027201.
25. Zhao L, Wang Y, Chen CX, Xu L, Jonas JB. Retinal nerve fibre layer thickness measured by Spectralis spectral-domain optical coherence tomography: The Beijing Eye Study. Acta Ophthalmol. 2014 Feb;92(1):e35-41. doi: 10.1111/aos.12240. Epub 2013 Aug 27. PMID: 23981513.
26. Mendez-Hernandez C, Wang S, Arribas-Pardo P, Salazar-Quiñones L, Güemes-Villahoz N, Fernandez-Perez C, Garcia-Feijoo J. Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma. Br J Ophthalmol. 2021 Jul;105(7):957-963. doi: 10.1136/bjophthalmol-2020-316455. Epub 2020 Jul 23. PMID: 32703781; PMCID: PMC8237198.
27. Wang S, Mendez-Hernandez C, Arribas-Pardo P, Salazar Quiñones L, Fernandez-Perez C, Garcia-Feijoo J. Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma. Curr Eye Res. 2020 Dec;45(12):1534-1542. doi: 10.1080/02713683.2020.1755698. Epub 2020 May 3. PMID: 32326764.
28. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012 Dec 1;3(12):3127-37. doi: 10.1364/BOE.3.003127. Epub 2012 Nov 7. PMID: 23243564; PMCID: PMC3521313.
29. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014 Jul;121(7):1322-32. doi: 10.1016/j.ophtha.2014.01.021. Epub 2014 Mar 12. PMID: 24629312; PMCID: PMC4082728.
30. Durmu? Ece B?, Sar?cao?lu MS. Examination of retinal vascular density changes via optical coherence tomography angiography in patients with glaucoma. Int Ophthalmol. 2021 Feb;41(2):687-698. doi: 10.1007/s10792-020-01626-8. Epub 2020 Oct 22. PMID: 33094441.
31. Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology. 2018 Nov;125(11):1720-1728. doi: 10.1016/j.ophtha.2018.05.006. Epub 2018 Jun 12. PMID: 29907322.
32. Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol. 2001 Jul;132(1):63-9. doi: 10.1016/s0002-9394(01)00871-6. PMID: 11438055.
33. Tun TA, Atalay E, Liu A, Liu C, Aung T, Nongpiur ME. Optical Coherence Tomography Angiography Assessment of Optic Nerve Head and Macula across the Primary Angle Closure Disease Spectrum. J Glaucoma. 2024 Aug 23. doi: 10.1097/IJG.0000000000002488. Epub ahead of print. PMID: 39171970.
34. Lin B, Zuo C, Gao X, Huang D, Lin M. Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography. J Clin Med. 2022 Jul 13;11(14):4040. doi: 10.3390/jcm11144040. PMID: 35887804; PMCID: PMC9318966.
35. Zhang S, Wu C, Liu L, Jia Y, Zhang Y, Zhang Y, Zhang H, Zhong Y, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am J Ophthalmol. 2017 Oct;182:194-200. doi: 10.1016/j.ajo.2017.07.024. Epub 2017 Aug 7. PMID: 28797550; PMCID: PMC6524764.
36. Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C, Gupta D, Mudumbai RC, Johnstone MA, Wang RK, Chen PP. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One. 2016 May 5;11(5):e0154691. doi: 10.1371/journal.pone.0154691. PMID: 27149261; PMCID: PMC4858256.
37. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016 Dec;123(12):2498-2508. doi: 10.1016/j.ophtha.2016.08.041. Epub 2016 Oct 7. PMID: 27726964; PMCID: PMC5362128.
38. Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg. 2016 Apr;6(2):125-33. doi: 10.21037/qims.2016.03.05. PMID: 27190764; PMCID: PMC4858460.
39. Salazar-Quiñones L, Peña-Urbina P, Fernández-Vigo JI, Pérez-Quiñones Y, Molero-Senosiain M, Mendez-Hernandez C, Martínez-de-la-Casa JM, García-Feijóo J. Reproducibility of peripapillary, optic nerve head and macular vessel density by OCT-A according to glaucoma severity staging. Arch Soc Esp Oftalmol (Engl Ed). 2023 Jun;98(6):317-324. doi: 10.1016/j.oftale.2023.04.002. Epub 2023 Apr 5. PMID: 37023850.
40. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, Akagi T, Manalastas PIC, Weinreb RN. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. Am J Ophthalmol. 2019 Mar;199:120-132. doi: 10.1016/j.ajo.2018.11.012. Epub 2018 Nov 26. PMID: 30496723; PMCID: PMC6382614.
41. Manalastas PIC, Zangwill LM, Daga FB, Christopher MA, Saunders LJ, Shoji T, Akagi T, Penteado RC, Yarmohammadi A, Suh MH, Medeiros FA, Weinreb RN. The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. J Glaucoma. 2018 Mar;27(3):227-232. doi: 10.1097/IJG.0000000000000862. PMID: 29303870; PMCID: PMC5831477.
42. Ishibashi S, Hirose N, Tawara A, Kubota T. Effect of latanoprost on the diurnal variations in the intraocular and ocular perfusion pressure in normal tension glaucoma. J Glaucoma. 2006 Oct;15(5):354-7. doi: 10.1097/01.ijg.0000212264.96864.3e. PMID: 16988595.
43. Liu CJ, Ko YC, Cheng CY, Chiu AW, Chou JC, Hsu WM, Liu JH. Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal-tension glaucoma patients. Ophthalmology. 2002 Dec;109(12):2241-7. doi: 10.1016/s0161-6420(02)01247-2. PMID: 12466165.
44. Ninomiya T, Kiyota N, Sharma P, Omodaka K, Himori N, Yasuda M, Kunikata H, Nakazawa T. The Relationship Between Artificial Intelligence-Assisted OCT Angiography-Derived Foveal Avascular Zone Parameters and Visual-Field Defect Progression in Eyes with Open-Angle Glaucoma. Ophthalmol Sci. 2023 Aug 20;4(2):100387. doi: 10.1016/j.xops.2023.100387. PMID: 38524379; PMCID: PMC10960060.
2. Grzybowski A, Och M, Kanclerz P, Leffler C, Moraes CG. Primary Open Angle Glaucoma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. J Clin Med. 2020 Mar 11;9(3):761. doi: 10.3390/jcm9030761. PMID: 32168880; PMCID: PMC7141380.
3. Matlach J, Bender S, König J, Binder H, Pfeiffer N, Hoffmann EM. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin Ophthalmol. 2018 Dec 18;13:9-16. doi: 10.2147/OPTH.S186526. PMID: 30587914; PMCID: PMC6302802.
4. Miglior S, Bertuzzi F. Relationship between intraocular pressure and glaucoma onset and progression. Curr Opin Pharmacol. 2013 Feb;13(1):32-5. doi: 10.1016/j.coph.2012.09.014. Epub 2012 Oct 31. PMID: 23122026.
5. Wang X, Jiang C, Ko T, Kong X, Yu X, Min W, Shi G, Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015 Sep;253(9):1557-64. doi: 10.1007/s00417-015-3095-y. Epub 2015 Aug 11. PMID: 26255817.
6. Hayreh SS. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res. 2001 Sep;20(5):595-624. doi: 10.1016/s1350-9462(01)00005-2. PMID: 11470452.
7. Venkataraman ST, Flanagan JG, Hudson C. Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma--a review. Microcirculation. 2010 Oct;17(7):568-81. doi: 10.1111/j.1549-8719.2010.00045.x. PMID: 21040122.
8. Toprak I, Yaylal? V, Yildirim C. Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma. Semin Ophthalmol. 2017;32(2):185-190. doi: 10.3109/08820538.2015.1046557. Epub 2015 Jul 6. PMID: 26146801.
9. Scuderi GL, Cesareo M, Perdicchi A, Recupero SM. Standard automated perimetry and algorithms for monitoring glaucoma progression. Prog Brain Res. 2008;173:77-99. doi: 10.1016/S0079-6123(08)01107-2. PMID: 18929103.
10. Lopez-Peña MJ, Ferreras A, Larrosa JM, Polo V, Pablo LE. Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography. J Glaucoma. 2011 Sep;20(7):422-32. doi: 10.1097/IJG.0b013e3181f7b121. PMID: 21278593.
11. Lavinsky F, Wu M, Schuman JS, Lucy KA, Liu M, Song Y, Fallon J, de Los Angeles Ramos Cadena M, Ishikawa H, Wollstein G. Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage? Ophthalmology. 2018 Dec;125(12):1907-1912. doi: 10.1016/j.ophtha.2018.05.020. Epub 2018 Jun 19. PMID: 29934267; PMCID: PMC6246816.
12. Tomita R, Rawlyk B, Sharpe GP, Hutchison DM, Shuba LM, Nicolela MT, Chauhan BC. Progressive Changes in the Neuroretinal Rim and Retinal Nerve Fiber Layer in Glaucoma: Impact of Baseline Values and Floor Effects. Ophthalmology. 2024 Jun;131(6):700-707. doi: 10.1016/j.ophtha.2023.12.032. Epub 2024 Jan 2. PMID: 38176444.
13. Rolle T, Dallorto L, Tavassoli M, Nuzzi R. Diagnostic Ability and Discriminant Values of OCT-Angiography Parameters in Early Glaucoma Diagnosis. Ophthalmic Res. 2019;61(3):143-152. doi: 10.1159/000489457. Epub 2018 Jun 28. PMID: 29953994.
14. Toshev AP, Schuster AK, Ul Hassan SN, Pfeiffer N, Hoffmann EM. Optical Coherence Tomography Angiography of Optic Disc in Eyes With Primary Open-angle Glaucoma and Normal-tension Glaucoma. J Glaucoma. 2019 Mar;28(3):243-251. doi: 10.1097/IJG.0000000000001184. PMID: 30624391.
15. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma. 2020 Apr;29(4):312-321. doi: 10.1097/IJG.0000000000001463. PMID: 32053551; PMCID: PMC7117982.
16. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018 May 18;11(5):835-843. doi: 10.18240/ijo.2018.05.20. PMID: 29862185; PMCID: PMC5957038.
17. Charlson ES, Sankar PS, Miller-Ellis E, Regina M, Fertig R, Salinas J, Pistilli M, Salowe RJ, Rhodes AL, Merritt WT 3rd, Chua M, Trachtman BT, Gudiseva HV, Collins DW, Chavali VR, Nichols C, Henderer J, Ying GS, Varma R, Jorgenson E, O'Brien JM. The primary open-angle african american glaucoma genetics study: baseline demographics. Ophthalmology. 2015 Apr;122(4):711-20. doi: 10.1016/j.ophtha.2014.11.015. Epub 2015 Jan 8. PMID: 25576993; PMCID: PMC4372490.
18. O'Brien JM, Salowe RJ, Fertig R, Salinas J, Pistilli M, Sankar PS, Miller-Ellis E, Lehman A, Murphy WHA, Homsher M, Gordon K, Ying GS. Family History in the Primary Open-Angle African American Glaucoma Genetics Study Cohort. Am J Ophthalmol. 2018 Aug;192:239-247. doi: 10.1016/j.ajo.2018.03.014. Epub 2018 Mar 17. PMID: 29555482; PMCID: PMC6064667.
19. Chun LY, Silas MR, Dimitroyannis RC, Ho K, Skondra D. Differences in macular capillary parameters between healthy black and white subjects with Optical Coherence Tomography Angiography (OCTA). PLoS One. 2019 Oct 9;14(10):e0223142. doi: 10.1371/journal.pone.0223142. PMID: 31596848; PMCID: PMC6785112.
20. Gunasegaran G, Moghimi S, Nishida T, Walker E, Kamalipour A, Wu JH, Mahmoudinezhad G, Zangwill LM, Weinreb RN. Racial Differences in the Diagnostic Accuracy of OCT Angiography Macular Vessel Density for Glaucoma. Ophthalmol Glaucoma. 2024 Mar-Apr;7(2):197-205. doi: 10.1016/j.ogla.2023.09.003. Epub 2023 Sep 30. PMID: 37783272.
21. Kumar H, Thulasidas M. Comparison of Perimetric Outcomes from Melbourne Rapid Fields Tablet Perimeter Software and Humphrey Field Analyzer in Glaucoma Patients. J Ophthalmol. 2020 Aug 22;2020:8384509. doi: 10.1155/2020/8384509. PMID: 32908686; PMCID: PMC7463344.
22. Eladawi N, Elmogy MM, Ghazal M, Helmy O, Aboelfetouh A, Riad A, Schaal S, El-Baz A. Classification of retinal diseases based on OCT Images. Front Biosci (Landmark Ed). 2018 Jan 1;23(2):247-264. doi: 10.2741/4589. PMID: 28930545.
23. Balasubramanian M, Bowd C, Vizzeri G, Weinreb RN, Zangwill LM. Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography. Opt Express. 2009 Mar 2;17(5):4019-36. doi: 10.1364/oe.17.004019. PMID: 19259243; PMCID: PMC2848174.
24. Banc A, Ungureanu MI. Normative data for optical coherence tomography in children: a systematic review. Eye (Lond). 2021 Mar;35(3):714-738. doi: 10.1038/s41433-020-01177-3. Epub 2020 Sep 14. PMID: 32929184; PMCID: PMC8027201.
25. Zhao L, Wang Y, Chen CX, Xu L, Jonas JB. Retinal nerve fibre layer thickness measured by Spectralis spectral-domain optical coherence tomography: The Beijing Eye Study. Acta Ophthalmol. 2014 Feb;92(1):e35-41. doi: 10.1111/aos.12240. Epub 2013 Aug 27. PMID: 23981513.
26. Mendez-Hernandez C, Wang S, Arribas-Pardo P, Salazar-Quiñones L, Güemes-Villahoz N, Fernandez-Perez C, Garcia-Feijoo J. Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma. Br J Ophthalmol. 2021 Jul;105(7):957-963. doi: 10.1136/bjophthalmol-2020-316455. Epub 2020 Jul 23. PMID: 32703781; PMCID: PMC8237198.
27. Wang S, Mendez-Hernandez C, Arribas-Pardo P, Salazar Quiñones L, Fernandez-Perez C, Garcia-Feijoo J. Gender-related Influences on Superficial Papillary Microcirculation Measured with Optical Coherence Tomography Angiography in Patients with Glaucoma. Curr Eye Res. 2020 Dec;45(12):1534-1542. doi: 10.1080/02713683.2020.1755698. Epub 2020 May 3. PMID: 32326764.
28. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012 Dec 1;3(12):3127-37. doi: 10.1364/BOE.3.003127. Epub 2012 Nov 7. PMID: 23243564; PMCID: PMC3521313.
29. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014 Jul;121(7):1322-32. doi: 10.1016/j.ophtha.2014.01.021. Epub 2014 Mar 12. PMID: 24629312; PMCID: PMC4082728.
30. Durmu? Ece B?, Sar?cao?lu MS. Examination of retinal vascular density changes via optical coherence tomography angiography in patients with glaucoma. Int Ophthalmol. 2021 Feb;41(2):687-698. doi: 10.1007/s10792-020-01626-8. Epub 2020 Oct 22. PMID: 33094441.
31. Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology. 2018 Nov;125(11):1720-1728. doi: 10.1016/j.ophtha.2018.05.006. Epub 2018 Jun 12. PMID: 29907322.
32. Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol. 2001 Jul;132(1):63-9. doi: 10.1016/s0002-9394(01)00871-6. PMID: 11438055.
33. Tun TA, Atalay E, Liu A, Liu C, Aung T, Nongpiur ME. Optical Coherence Tomography Angiography Assessment of Optic Nerve Head and Macula across the Primary Angle Closure Disease Spectrum. J Glaucoma. 2024 Aug 23. doi: 10.1097/IJG.0000000000002488. Epub ahead of print. PMID: 39171970.
34. Lin B, Zuo C, Gao X, Huang D, Lin M. Quantitative Measurements of Vessel Density and Blood Flow Areas Primary Angle Closure Diseases: A Study of Optical Coherence Tomography Angiography. J Clin Med. 2022 Jul 13;11(14):4040. doi: 10.3390/jcm11144040. PMID: 35887804; PMCID: PMC9318966.
35. Zhang S, Wu C, Liu L, Jia Y, Zhang Y, Zhang Y, Zhang H, Zhong Y, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am J Ophthalmol. 2017 Oct;182:194-200. doi: 10.1016/j.ajo.2017.07.024. Epub 2017 Aug 7. PMID: 28797550; PMCID: PMC6524764.
36. Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C, Gupta D, Mudumbai RC, Johnstone MA, Wang RK, Chen PP. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One. 2016 May 5;11(5):e0154691. doi: 10.1371/journal.pone.0154691. PMID: 27149261; PMCID: PMC4858256.
37. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016 Dec;123(12):2498-2508. doi: 10.1016/j.ophtha.2016.08.041. Epub 2016 Oct 7. PMID: 27726964; PMCID: PMC5362128.
38. Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant Imaging Med Surg. 2016 Apr;6(2):125-33. doi: 10.21037/qims.2016.03.05. PMID: 27190764; PMCID: PMC4858460.
39. Salazar-Quiñones L, Peña-Urbina P, Fernández-Vigo JI, Pérez-Quiñones Y, Molero-Senosiain M, Mendez-Hernandez C, Martínez-de-la-Casa JM, García-Feijóo J. Reproducibility of peripapillary, optic nerve head and macular vessel density by OCT-A according to glaucoma severity staging. Arch Soc Esp Oftalmol (Engl Ed). 2023 Jun;98(6):317-324. doi: 10.1016/j.oftale.2023.04.002. Epub 2023 Apr 5. PMID: 37023850.
40. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Penteado RC, Akagi T, Manalastas PIC, Weinreb RN. Macula Vessel Density and Thickness in Early Primary Open-Angle Glaucoma. Am J Ophthalmol. 2019 Mar;199:120-132. doi: 10.1016/j.ajo.2018.11.012. Epub 2018 Nov 26. PMID: 30496723; PMCID: PMC6382614.
41. Manalastas PIC, Zangwill LM, Daga FB, Christopher MA, Saunders LJ, Shoji T, Akagi T, Penteado RC, Yarmohammadi A, Suh MH, Medeiros FA, Weinreb RN. The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. J Glaucoma. 2018 Mar;27(3):227-232. doi: 10.1097/IJG.0000000000000862. PMID: 29303870; PMCID: PMC5831477.
42. Ishibashi S, Hirose N, Tawara A, Kubota T. Effect of latanoprost on the diurnal variations in the intraocular and ocular perfusion pressure in normal tension glaucoma. J Glaucoma. 2006 Oct;15(5):354-7. doi: 10.1097/01.ijg.0000212264.96864.3e. PMID: 16988595.
43. Liu CJ, Ko YC, Cheng CY, Chiu AW, Chou JC, Hsu WM, Liu JH. Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal-tension glaucoma patients. Ophthalmology. 2002 Dec;109(12):2241-7. doi: 10.1016/s0161-6420(02)01247-2. PMID: 12466165.
44. Ninomiya T, Kiyota N, Sharma P, Omodaka K, Himori N, Yasuda M, Kunikata H, Nakazawa T. The Relationship Between Artificial Intelligence-Assisted OCT Angiography-Derived Foveal Avascular Zone Parameters and Visual-Field Defect Progression in Eyes with Open-Angle Glaucoma. Ophthalmol Sci. 2023 Aug 20;4(2):100387. doi: 10.1016/j.xops.2023.100387. PMID: 38524379; PMCID: PMC10960060.
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times