Relationship between central corneal thickness and optic nerve head parameters in primary open-angle glaucoma
Medical hypothesis, discovery & innovation in optometry,
Vol. 5 No. 3 (2024),
25 January 2025
,
Page 119-126
https://doi.org/10.51329/mehdioptometry206
Abstract
Background: Primary open-angle glaucoma (POAG) is an ocular entity that causes optic neuropathy. Thin central corneal thickness (CCT) in patients with POAG correlates with changes in various optic nerve head structural parameters. Additionally, racial differences exist in CCT and optic disc parameters. Herein, we assessed the potential relationship between CCT and optic nerve head parameters in treatment-naive patients of Persian ethnicity who were diagnosed with POAG of varying severity levels.Methods: This hospital-based analytical cross-sectional study recruited patients of Persian ethnicity diagnosed with treatment-naive POAG. Participants underwent detailed optometric and ophthalmic examinations. Visual field testing was performed using a Humphrey perimeter. Spectral-domain optical coherence tomography (OCT) was performed using a Cirrus OCT device to record optic nerve head parameters: disc area, rim area, vertical cup-to-disc ratio, average cup-to-disc ratio, cup volume, and average retinal nerve fiber layer thickness (RNFLT). The CCT was measured using an ultrasonic pachymeter.
Results: We recruited 168 eyes of 84 patients with POAG with a mean (standard deviation) age of 60.30 (12.50) years, comprising 33 (39.29%) men and 51 (60.71%) women. While weak but statistically significant inverse correlations of CCT with the vertical cup-to-disc ratio (r = - 0.19; P < 0.05), average cup-to-disc ratio (r = - 0.17; P < 0.05), and cup volume (r = - 0.17; P < 0.05) were found, other optic nerve parameters showed no significant correlations with CCT (all P > 0.05). Stepwise multiple linear regression analysis indicated that, for each unit increase in the vertical cup-to-disc ratio, the CCT decreased by 54.98 µm (P < 0.05).
Conclusions: The CCT in eyes with treatment-naive POAG of varying severity levels in a Persian ethnic group was weakly but statistically significantly inversely correlated with the vertical cup-to-disc ratio, average cup-to-disc ratio, and cup volume. For every unit increase in the vertical cup-to-disc ratio, the CCT decreased by 54.98 µm. Our findings indicate that in patients with POAG, CCT correlates with some changes in structural optic nerve head parameters, including the cup volume and vertical/average cup-to-disc ratios. Further longitudinal studies including individuals from various racial backgrounds and POAG severity levels are needed to verify the relationship between CCT and optic nerve parameters at different time points of disease progression.
Keywords:
- primary open angle glaucoma
- optical coherence tomography
- early detection of disease
- corneal thickness measurement
- corneal pachymetric measurement
- optic nerve head

References
1. Weinreb RN, Leung CK, Crowston JG, Medeiros FA, Friedman DS, Wiggs JL, Martin KR. Primary open-angle glaucoma. Nat Rev Dis Primers. 2016 Sep 22;2:16067. doi: 10.1038/nrdp.2016.67. PMID: 27654570.
2. Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009 Mar 12;360(11):1113-24. doi: 10.1056/NEJMra0804630. PMID: 19279343; PMCID: PMC3700399.
3. Soh Z, Yu M, Betzler BK, Majithia S, Thakur S, Tham YC, Wong TY, Aung T, Friedman DS, Cheng CY. The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-analysis. Ophthalmology. 2021 Oct;128(10):1393-1404. doi: 10.1016/j.ophtha.2021.04.009. Epub 2021 Apr 16. PMID: 33865875.
4. Sheybani A, Scott R, Samuelson TW, Kahook MY, Bettis DI, Ahmed IIK, Stephens JD, Kent D, Ferguson TJ, Herndon LW. Open-Angle Glaucoma: Burden of Illness, Current Therapies, and the Management of Nocturnal IOP Variation. Ophthalmol Ther. 2020 Mar;9(1):1-14. doi: 10.1007/s40123-019-00222-z. Epub 2019 Nov 15. PMID: 31732872; PMCID: PMC7054505.
5. Garg A, Gazzard G. Treatment choices for newly diagnosed primary open angle and ocular hypertension patients. Eye (Lond). 2020 Jan;34(1):60-71. doi: 10.1038/s41433-019-0633-6. Epub 2019 Nov 4. PMID: 31685971; PMCID: PMC7002706.
6. Ko YC, Liu CJ, Hsu WM. Varying effects of corneal thickness on intraocular pressure measurements with different tonometers. Eye (Lond). 2005 Mar;19(3):327-32. doi: 10.1038/sj.eye.6701458. PMID: 15258603.
7. Belovay GW, Goldberg I. The thick and thin of the central corneal thickness in glaucoma. Eye (Lond). 2018 May;32(5):915-923. doi: 10.1038/s41433-018-0033-3. Epub 2018 Feb 15. PMID: 29445115; PMCID: PMC5944650.
8. Brandt JD, Beiser JA, Gordon MO, Kass MA; Ocular Hypertension Treatment Study (OHTS) Group. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004 Nov;138(5):717-22. doi: 10.1016/j.ajo.2004.07.036. PMID: 15531304.
9. Lucy KA, Wollstein G. Structural and Functional Evaluations for the Early Detection of Glaucoma. Expert Rev Ophthalmol. 2016;11(5):367-376. doi: 10.1080/17469899.2016.1229599. Epub 2016 Sep 14. PMID: 28603546; PMCID: PMC5464747.
10. Schrems WA, Schrems-Hoesl LM, Mardin CY, Laemmer R, Kruse FE, Horn FK. Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures? J Glaucoma. 2017 Apr;26(4):373-382. doi: 10.1097/IJG.0000000000000628. PMID: 28118204.
11. Mokbel TH, Ghanem AA. Correlation of central corneal thickness and optic nerve head topography in patients with primary open-angle glaucoma. Oman J Ophthalmol. 2010 May;3(2):75-80. doi: 10.4103/0974-620X.64231. PMID: 21217900; PMCID: PMC3003855.
12. Pakravan M, Parsa A, Sanagou M, Parsa CF. Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma. Br J Ophthalmol. 2007 Jan;91(1):26-8. doi: 10.1136/bjo.2006.106039. Epub 2006 Sep 14. PMID: 16973656; PMCID: PMC1857558.
13. Lesk MR, Hafez AS, Descovich D. Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension. Arch Ophthalmol. 2006 Nov;124(11):1568-72. doi: 10.1001/archopht.124.11.1568. PMID: 17102003.
14. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ; Cirrus OCT Normative Database Study Group. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012 Mar;130(3):312-8. doi: 10.1001/archopthalmol.2011.1576. PMID: 22411660; PMCID: PMC5536837.
15. Badr M, Masis Solano M, Amoozgar B, Nguyen A, Porco T, Lin S. Central Corneal Thickness Variances Among Different Asian Ethnicities in Glaucoma and Nonglaucoma Patients. J Glaucoma. 2019 Mar;28(3):223-230. doi: 10.1097/IJG.0000000000001180. PMID: 30624387.
16. Chansangpetch S, Huang G, Coh P, Oldenburg C, Amoozgar B, He M, Lin SC. Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects. J Glaucoma. 2018 Apr;27(4):350-356. doi: 10.1097/IJG.0000000000000889. PMID: 29394205; PMCID: PMC9982653.
17. Hashemi H, Khabazkhoob M, Fotouhi A. Topographic Keratoconus is not Rare in an Iranian population: the Tehran Eye Study. Ophthalmic Epidemiol. 2013 Dec;20(6):385-91. doi: 10.3109/09286586.2013.848458. Epub 2013 Oct 29. PMID: 24168025.
18. Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma. 2012 Sep;21(7):498-504. doi: 10.1097/IJG.0b013e318220dbb7. PMID: 21637115.
19. Newkirk MR, Gardiner SK, Demirel S, Johnson CA. Assessment of false positives with the Humphrey Field Analyzer II perimeter with the SITA Algorithm. Invest Ophthalmol Vis Sci. 2006 Oct;47(10):4632-7. doi: 10.1167/iovs.05-1598. PMID: 17003461.
20. Tan JCK, Yohannan J, Ramulu PY, Kalloniatis M, Crabb DP, Crowston J, Phu J. Visual field testing in glaucoma using the Swedish Interactive Thresholding Algorithm (SITA). Surv Ophthalmol. 2025 Jan-Feb;70(1):141-152. doi: 10.1016/j.survophthal.2024.09.005. Epub 2024 Sep 29. PMID: 39349186.
21. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, Cheung CY, Lai G, Lam DS. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011 Aug;118(8):1558-62. doi: 10.1016/j.ophtha.2011.01.026. Epub 2011 Apr 29. PMID: 21529954.
22. Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012 Jul 9;53(8):4519-30. doi: 10.1167/iovs.11-8362. PMID: 22577077.
23. Mwanza JC, Durbin MK, Budenz DL; Cirrus OCT Normative Database Study Group. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011 Mar;151(3):514-21.e1. doi: 10.1016/j.ajo.2010.09.015. Epub 2011 Jan 13. PMID: 21236402; PMCID: PMC5457794.
24. Roustaei N. Application and interpretation of linear-regression analysis. Med Hypothesis Discov Innov Ophthalmol. 2024 Oct 14;13(3):151-159. doi: 10.51329/mehdiophthal1506. PMID: 39507810; PMCID: PMC11537238.
25. Prata TS, Lima VC, Guedes LM, Biteli LG, Teixeira SH, de Moraes CG, Ritch R, Paranhos A Jr. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol. 2012 Sep-Oct;40(7):682-8. doi: 10.1111/j.1442-9071.2012.02790.x. PMID: 22429725.
26. Akkaya S, Can E, Öztürk F. Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol. 2016 Oct;36(5):727-36. doi: 10.1007/s10792-016-0191-x. Epub 2016 Feb 9. PMID: 26857822.
27. Kaushik S, Gyatsho J, Jain R, Pandav SS, Gupta A. Correlation between retinal nerve fiber layer thickness and central corneal thickness in patients with ocular hypertension: an optical coherence tomography study. Am J Ophthalmol. 2006 May;141(5):884-890. doi: 10.1016/j.ajo.2005.12.026. Epub 2006 Mar 20. PMID: 16546106.
28. Belamkar A, Harris A, Oddone F, Verticchio Vercellin A, Fabczak-Kubicka A, Siesky B. Asian Race and Primary Open-Angle Glaucoma: Where Do We Stand? J Clin Med. 2022 Apr 28;11(9):2486. doi: 10.3390/jcm11092486. PMID: 35566612; PMCID: PMC9099679.
29. Berkowitz ST, Groth SL, Gangaputra S, Patel S. Racial/Ethnic Disparities in Ophthalmology Clinical Trials Resulting in US Food and Drug Administration Drug Approvals From 2000 to 2020. JAMA Ophthalmol. 2021 Jun 1;139(6):629-637. doi: 10.1001/jamaophthalmol.2021.0857. PMID: 33885724; PMCID: PMC8063130.
30. Salowe R, Salinas J, Farbman NH, Mohammed A, Warren JZ, Rhodes A, Brucker A, Regina M, Miller-Ellis E, Sankar PS, Lehman A, O'Brien JM. Primary Open-Angle Glaucoma in Individuals of African Descent: A Review of Risk Factors. J Clin Exp Ophthalmol. 2015 Aug;6(4):450. doi: 10.4172/2155-9570.1000450. Epub 2015 Jul 31. PMID: 26664770; PMCID: PMC4671514.
31. Zhou S, Burkemper B, Pardeshi AA, Apolo G, Richter G, Jiang X, Torres M, McKean-Cowdin R, Varma R, Xu BY. Racial and Ethnic Differences in the Roles of Myopia and Ocular Biometrics as Risk Factors for Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2023 Jun 1;64(7):4. doi: 10.1167/iovs.64.7.4. PMID: 37261385; PMCID: PMC10241311.
32. Racette L, Boden C, Kleinhandler SL, Girkin CA, Liebmann JM, Zangwill LM, Medeiros FA, Bowd C, Weinreb RN, Wilson MR, Sample PA. Differences in visual function and optic nerve structure between healthy eyes of blacks and whites. Arch Ophthalmol. 2005 Nov;123(11):1547-53. doi: 10.1001/archopht.123.11.1547. PMID: 16286617.
33. Samarawickrama C, Wang JJ, Huynh SC, Pai A, Burlutsky G, Rose KA, Mitchell P. Ethnic differences in optic nerve head and retinal nerve fibre layer thickness parameters in children. Br J Ophthalmol. 2010 Jul;94(7):871-6. doi: 10.1136/bjo.2009.158279. Epub 2009 Oct 12. PMID: 19822916.
34. Seider MI, Lee RY, Wang D, Pekmezci M, Porco TC, Lin SC. Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography. J Glaucoma. 2009 Oct-Nov;18(8):595-600. doi: 10.1097/IJG.0b013e3181996f05. PMID: 19826388; PMCID: PMC2836908.
35. Gallo Afflitto G, Swaminathan SS. Racial-ethnic disparities in concurrent rates of peripapillary & macular OCT parameters among a large glaucomatous clinical population. Eye (Lond). 2024 Oct;38(14):2711-2717. doi: 10.1038/s41433-024-03103-3. Epub 2024 May 4. PMID: 38704424; PMCID: PMC11427570.
36. Yao M, Kitayama K, Yu F, Tseng VL, Coleman AL. Association Between Myopia and Primary Open-Angle Glaucoma by Race and Ethnicity in Older Adults in the California Medicare Population. JAMA Ophthalmol. 2023 Jun 1;141(6):525-532. doi: 10.1001/jamaophthalmol.2023.1007. PMID: 37103940; PMCID: PMC10141276.
37. Grant A, Roy-Gagnon MH, Bastasic J, Talekar A, Miller G, Li G, Freeman EE. Exploring ethnic and racial differences in intraocular pressure and glaucoma: The Canadian Longitudinal Study on aging. Heliyon. 2024 Mar 26;10(7):e28611. doi: 10.1016/j.heliyon.2024.e28611. PMID: 38586381; PMCID: PMC10998131.
38. Addis V, Chan L, Chen J, Goodyear K, Pistilli M, Salowe R, Lee R, Sankar P, Miller-Ellis E, Cui QN, Maguire MG, O'Brien J. Evaluation of the Cirrus High-Definition OCT Normative Database Probability Codes in a Black American Population. Ophthalmol Glaucoma. 2022 Jan-Feb;5(1):110-118. doi: 10.1016/j.ogla.2021.05.002. Epub 2021 May 23. PMID: 34033949; PMCID: PMC8608902.
39. KhalafAllah MT, Zangwill LM, Proudfoot J, Walker E, Girkin CA, Fazio MA, Weinreb RN, Bowd C, Moghimi S, De Moraes CG, Liebmann JM, Racette L. Racial Differences in Diagnostic Accuracy of Retinal Nerve Fiber Layer Thickness in Primary Open-Angle Glaucoma. Am J Ophthalmol. 2023 Oct 27:S0002-9394(23)00436-1. doi: 10.1016/j.ajo.2023.10.012. Epub ahead of print. PMID: 39491122.
40. El-Nimri NW, Moghimi S, Nishida T, Yarmohammadi A, Zangwill LM, Hou H, Proudfoot J, Walker E, Fazio MA, Girkin CA, Liebmann JM, Weinreb RN. Racial Differences in Detection of Glaucoma Using Retinal Nerve Fiber Layer Thickness and Bruch Membrane Opening Minimum Rim Width. Am J Ophthalmol. 2023 Feb;246:223-235. doi: 10.1016/j.ajo.2022.10.010. Epub 2022 Oct 29. PMID: 36662535.
41. Heidari Z, Baharinia M, Ebrahimi-Besheli K, Ahmadi H. A review of artificial intelligence applications in anterior segment ocular diseases. Medical hypothesis, discovery & innovation in optometry. 2022 Sep 30;3(1):22-33. doi: 10.51329/mehdioptometry146
42. Liu P, Higashita R, Guo PY, Okamoto K, Li F, Nguyen A, Sakata R, Duan L, Aihara M, Lin S, Zhang X, Leung CK, Liu J. Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images. Br J Ophthalmol. 2023 Jun;107(6):802-808. doi: 10.1136/bjophthalmol-2021-319798. Epub 2022 Jan 28. PMID: 35091438; PMCID: PMC10313952.
43. Fu H, Xu Y, Lin S, Wong DWK, Baskaran M, Mahesh M, Aung T, Liu J. Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network. IEEE Trans Cybern. 2020 Jul;50(7):3358-3366. doi: 10.1109/TCYB.2019.2897162. Epub 2019 Feb 15. PMID: 30794201.
44. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, Tun TA, Mahesh M, Perera SA, Aung T. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. Am J Ophthalmol. 2019 Jul;203:37-45. doi: 10.1016/j.ajo.2019.02.028. Epub 2019 Mar 6. PMID: 30849350.
45. Xu BY, Chiang M, Chaudhary S, Kulkarni S, Pardeshi AA, Varma R. Deep Learning Classifiers for Automated Detection of Gonioscopic Angle Closure Based on Anterior Segment OCT Images. Am J Ophthalmol. 2019 Dec;208:273-280. doi: 10.1016/j.ajo.2019.08.004. Epub 2019 Aug 22. PMID: 31445003; PMCID: PMC6888901.
2. Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009 Mar 12;360(11):1113-24. doi: 10.1056/NEJMra0804630. PMID: 19279343; PMCID: PMC3700399.
3. Soh Z, Yu M, Betzler BK, Majithia S, Thakur S, Tham YC, Wong TY, Aung T, Friedman DS, Cheng CY. The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-analysis. Ophthalmology. 2021 Oct;128(10):1393-1404. doi: 10.1016/j.ophtha.2021.04.009. Epub 2021 Apr 16. PMID: 33865875.
4. Sheybani A, Scott R, Samuelson TW, Kahook MY, Bettis DI, Ahmed IIK, Stephens JD, Kent D, Ferguson TJ, Herndon LW. Open-Angle Glaucoma: Burden of Illness, Current Therapies, and the Management of Nocturnal IOP Variation. Ophthalmol Ther. 2020 Mar;9(1):1-14. doi: 10.1007/s40123-019-00222-z. Epub 2019 Nov 15. PMID: 31732872; PMCID: PMC7054505.
5. Garg A, Gazzard G. Treatment choices for newly diagnosed primary open angle and ocular hypertension patients. Eye (Lond). 2020 Jan;34(1):60-71. doi: 10.1038/s41433-019-0633-6. Epub 2019 Nov 4. PMID: 31685971; PMCID: PMC7002706.
6. Ko YC, Liu CJ, Hsu WM. Varying effects of corneal thickness on intraocular pressure measurements with different tonometers. Eye (Lond). 2005 Mar;19(3):327-32. doi: 10.1038/sj.eye.6701458. PMID: 15258603.
7. Belovay GW, Goldberg I. The thick and thin of the central corneal thickness in glaucoma. Eye (Lond). 2018 May;32(5):915-923. doi: 10.1038/s41433-018-0033-3. Epub 2018 Feb 15. PMID: 29445115; PMCID: PMC5944650.
8. Brandt JD, Beiser JA, Gordon MO, Kass MA; Ocular Hypertension Treatment Study (OHTS) Group. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004 Nov;138(5):717-22. doi: 10.1016/j.ajo.2004.07.036. PMID: 15531304.
9. Lucy KA, Wollstein G. Structural and Functional Evaluations for the Early Detection of Glaucoma. Expert Rev Ophthalmol. 2016;11(5):367-376. doi: 10.1080/17469899.2016.1229599. Epub 2016 Sep 14. PMID: 28603546; PMCID: PMC5464747.
10. Schrems WA, Schrems-Hoesl LM, Mardin CY, Laemmer R, Kruse FE, Horn FK. Can Glaucomatous Visual Field Progression be Predicted by Structural and Functional Measures? J Glaucoma. 2017 Apr;26(4):373-382. doi: 10.1097/IJG.0000000000000628. PMID: 28118204.
11. Mokbel TH, Ghanem AA. Correlation of central corneal thickness and optic nerve head topography in patients with primary open-angle glaucoma. Oman J Ophthalmol. 2010 May;3(2):75-80. doi: 10.4103/0974-620X.64231. PMID: 21217900; PMCID: PMC3003855.
12. Pakravan M, Parsa A, Sanagou M, Parsa CF. Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma. Br J Ophthalmol. 2007 Jan;91(1):26-8. doi: 10.1136/bjo.2006.106039. Epub 2006 Sep 14. PMID: 16973656; PMCID: PMC1857558.
13. Lesk MR, Hafez AS, Descovich D. Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension. Arch Ophthalmol. 2006 Nov;124(11):1568-72. doi: 10.1001/archopht.124.11.1568. PMID: 17102003.
14. Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ; Cirrus OCT Normative Database Study Group. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012 Mar;130(3):312-8. doi: 10.1001/archopthalmol.2011.1576. PMID: 22411660; PMCID: PMC5536837.
15. Badr M, Masis Solano M, Amoozgar B, Nguyen A, Porco T, Lin S. Central Corneal Thickness Variances Among Different Asian Ethnicities in Glaucoma and Nonglaucoma Patients. J Glaucoma. 2019 Mar;28(3):223-230. doi: 10.1097/IJG.0000000000001180. PMID: 30624387.
16. Chansangpetch S, Huang G, Coh P, Oldenburg C, Amoozgar B, He M, Lin SC. Differences in Optic Nerve Head, Retinal Nerve Fiber Layer, and Ganglion Cell Complex Parameters Between Caucasian and Chinese Subjects. J Glaucoma. 2018 Apr;27(4):350-356. doi: 10.1097/IJG.0000000000000889. PMID: 29394205; PMCID: PMC9982653.
17. Hashemi H, Khabazkhoob M, Fotouhi A. Topographic Keratoconus is not Rare in an Iranian population: the Tehran Eye Study. Ophthalmic Epidemiol. 2013 Dec;20(6):385-91. doi: 10.3109/09286586.2013.848458. Epub 2013 Oct 29. PMID: 24168025.
18. Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma. 2012 Sep;21(7):498-504. doi: 10.1097/IJG.0b013e318220dbb7. PMID: 21637115.
19. Newkirk MR, Gardiner SK, Demirel S, Johnson CA. Assessment of false positives with the Humphrey Field Analyzer II perimeter with the SITA Algorithm. Invest Ophthalmol Vis Sci. 2006 Oct;47(10):4632-7. doi: 10.1167/iovs.05-1598. PMID: 17003461.
20. Tan JCK, Yohannan J, Ramulu PY, Kalloniatis M, Crabb DP, Crowston J, Phu J. Visual field testing in glaucoma using the Swedish Interactive Thresholding Algorithm (SITA). Surv Ophthalmol. 2025 Jan-Feb;70(1):141-152. doi: 10.1016/j.survophthal.2024.09.005. Epub 2024 Sep 29. PMID: 39349186.
21. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, Cheung CY, Lai G, Lam DS. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011 Aug;118(8):1558-62. doi: 10.1016/j.ophtha.2011.01.026. Epub 2011 Apr 29. PMID: 21529954.
22. Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012 Jul 9;53(8):4519-30. doi: 10.1167/iovs.11-8362. PMID: 22577077.
23. Mwanza JC, Durbin MK, Budenz DL; Cirrus OCT Normative Database Study Group. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011 Mar;151(3):514-21.e1. doi: 10.1016/j.ajo.2010.09.015. Epub 2011 Jan 13. PMID: 21236402; PMCID: PMC5457794.
24. Roustaei N. Application and interpretation of linear-regression analysis. Med Hypothesis Discov Innov Ophthalmol. 2024 Oct 14;13(3):151-159. doi: 10.51329/mehdiophthal1506. PMID: 39507810; PMCID: PMC11537238.
25. Prata TS, Lima VC, Guedes LM, Biteli LG, Teixeira SH, de Moraes CG, Ritch R, Paranhos A Jr. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol. 2012 Sep-Oct;40(7):682-8. doi: 10.1111/j.1442-9071.2012.02790.x. PMID: 22429725.
26. Akkaya S, Can E, Öztürk F. Comparison of the corneal biomechanical properties, optic nerve head topographic parameters, and retinal nerve fiber layer thickness measurements in diabetic and non-diabetic primary open-angle glaucoma. Int Ophthalmol. 2016 Oct;36(5):727-36. doi: 10.1007/s10792-016-0191-x. Epub 2016 Feb 9. PMID: 26857822.
27. Kaushik S, Gyatsho J, Jain R, Pandav SS, Gupta A. Correlation between retinal nerve fiber layer thickness and central corneal thickness in patients with ocular hypertension: an optical coherence tomography study. Am J Ophthalmol. 2006 May;141(5):884-890. doi: 10.1016/j.ajo.2005.12.026. Epub 2006 Mar 20. PMID: 16546106.
28. Belamkar A, Harris A, Oddone F, Verticchio Vercellin A, Fabczak-Kubicka A, Siesky B. Asian Race and Primary Open-Angle Glaucoma: Where Do We Stand? J Clin Med. 2022 Apr 28;11(9):2486. doi: 10.3390/jcm11092486. PMID: 35566612; PMCID: PMC9099679.
29. Berkowitz ST, Groth SL, Gangaputra S, Patel S. Racial/Ethnic Disparities in Ophthalmology Clinical Trials Resulting in US Food and Drug Administration Drug Approvals From 2000 to 2020. JAMA Ophthalmol. 2021 Jun 1;139(6):629-637. doi: 10.1001/jamaophthalmol.2021.0857. PMID: 33885724; PMCID: PMC8063130.
30. Salowe R, Salinas J, Farbman NH, Mohammed A, Warren JZ, Rhodes A, Brucker A, Regina M, Miller-Ellis E, Sankar PS, Lehman A, O'Brien JM. Primary Open-Angle Glaucoma in Individuals of African Descent: A Review of Risk Factors. J Clin Exp Ophthalmol. 2015 Aug;6(4):450. doi: 10.4172/2155-9570.1000450. Epub 2015 Jul 31. PMID: 26664770; PMCID: PMC4671514.
31. Zhou S, Burkemper B, Pardeshi AA, Apolo G, Richter G, Jiang X, Torres M, McKean-Cowdin R, Varma R, Xu BY. Racial and Ethnic Differences in the Roles of Myopia and Ocular Biometrics as Risk Factors for Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2023 Jun 1;64(7):4. doi: 10.1167/iovs.64.7.4. PMID: 37261385; PMCID: PMC10241311.
32. Racette L, Boden C, Kleinhandler SL, Girkin CA, Liebmann JM, Zangwill LM, Medeiros FA, Bowd C, Weinreb RN, Wilson MR, Sample PA. Differences in visual function and optic nerve structure between healthy eyes of blacks and whites. Arch Ophthalmol. 2005 Nov;123(11):1547-53. doi: 10.1001/archopht.123.11.1547. PMID: 16286617.
33. Samarawickrama C, Wang JJ, Huynh SC, Pai A, Burlutsky G, Rose KA, Mitchell P. Ethnic differences in optic nerve head and retinal nerve fibre layer thickness parameters in children. Br J Ophthalmol. 2010 Jul;94(7):871-6. doi: 10.1136/bjo.2009.158279. Epub 2009 Oct 12. PMID: 19822916.
34. Seider MI, Lee RY, Wang D, Pekmezci M, Porco TC, Lin SC. Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography. J Glaucoma. 2009 Oct-Nov;18(8):595-600. doi: 10.1097/IJG.0b013e3181996f05. PMID: 19826388; PMCID: PMC2836908.
35. Gallo Afflitto G, Swaminathan SS. Racial-ethnic disparities in concurrent rates of peripapillary & macular OCT parameters among a large glaucomatous clinical population. Eye (Lond). 2024 Oct;38(14):2711-2717. doi: 10.1038/s41433-024-03103-3. Epub 2024 May 4. PMID: 38704424; PMCID: PMC11427570.
36. Yao M, Kitayama K, Yu F, Tseng VL, Coleman AL. Association Between Myopia and Primary Open-Angle Glaucoma by Race and Ethnicity in Older Adults in the California Medicare Population. JAMA Ophthalmol. 2023 Jun 1;141(6):525-532. doi: 10.1001/jamaophthalmol.2023.1007. PMID: 37103940; PMCID: PMC10141276.
37. Grant A, Roy-Gagnon MH, Bastasic J, Talekar A, Miller G, Li G, Freeman EE. Exploring ethnic and racial differences in intraocular pressure and glaucoma: The Canadian Longitudinal Study on aging. Heliyon. 2024 Mar 26;10(7):e28611. doi: 10.1016/j.heliyon.2024.e28611. PMID: 38586381; PMCID: PMC10998131.
38. Addis V, Chan L, Chen J, Goodyear K, Pistilli M, Salowe R, Lee R, Sankar P, Miller-Ellis E, Cui QN, Maguire MG, O'Brien J. Evaluation of the Cirrus High-Definition OCT Normative Database Probability Codes in a Black American Population. Ophthalmol Glaucoma. 2022 Jan-Feb;5(1):110-118. doi: 10.1016/j.ogla.2021.05.002. Epub 2021 May 23. PMID: 34033949; PMCID: PMC8608902.
39. KhalafAllah MT, Zangwill LM, Proudfoot J, Walker E, Girkin CA, Fazio MA, Weinreb RN, Bowd C, Moghimi S, De Moraes CG, Liebmann JM, Racette L. Racial Differences in Diagnostic Accuracy of Retinal Nerve Fiber Layer Thickness in Primary Open-Angle Glaucoma. Am J Ophthalmol. 2023 Oct 27:S0002-9394(23)00436-1. doi: 10.1016/j.ajo.2023.10.012. Epub ahead of print. PMID: 39491122.
40. El-Nimri NW, Moghimi S, Nishida T, Yarmohammadi A, Zangwill LM, Hou H, Proudfoot J, Walker E, Fazio MA, Girkin CA, Liebmann JM, Weinreb RN. Racial Differences in Detection of Glaucoma Using Retinal Nerve Fiber Layer Thickness and Bruch Membrane Opening Minimum Rim Width. Am J Ophthalmol. 2023 Feb;246:223-235. doi: 10.1016/j.ajo.2022.10.010. Epub 2022 Oct 29. PMID: 36662535.
41. Heidari Z, Baharinia M, Ebrahimi-Besheli K, Ahmadi H. A review of artificial intelligence applications in anterior segment ocular diseases. Medical hypothesis, discovery & innovation in optometry. 2022 Sep 30;3(1):22-33. doi: 10.51329/mehdioptometry146
42. Liu P, Higashita R, Guo PY, Okamoto K, Li F, Nguyen A, Sakata R, Duan L, Aihara M, Lin S, Zhang X, Leung CK, Liu J. Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images. Br J Ophthalmol. 2023 Jun;107(6):802-808. doi: 10.1136/bjophthalmol-2021-319798. Epub 2022 Jan 28. PMID: 35091438; PMCID: PMC10313952.
43. Fu H, Xu Y, Lin S, Wong DWK, Baskaran M, Mahesh M, Aung T, Liu J. Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network. IEEE Trans Cybern. 2020 Jul;50(7):3358-3366. doi: 10.1109/TCYB.2019.2897162. Epub 2019 Feb 15. PMID: 30794201.
44. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, Tun TA, Mahesh M, Perera SA, Aung T. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images. Am J Ophthalmol. 2019 Jul;203:37-45. doi: 10.1016/j.ajo.2019.02.028. Epub 2019 Mar 6. PMID: 30849350.
45. Xu BY, Chiang M, Chaudhary S, Kulkarni S, Pardeshi AA, Varma R. Deep Learning Classifiers for Automated Detection of Gonioscopic Angle Closure Based on Anterior Segment OCT Images. Am J Ophthalmol. 2019 Dec;208:273-280. doi: 10.1016/j.ajo.2019.08.004. Epub 2019 Aug 22. PMID: 31445003; PMCID: PMC6888901.
- Abstract Viewed: 0 times
- Full Text PDF Downloaded: 0 times