IVORC
  • Register
  • Login

Medical hypothesis discovery and innovation in ophthalmology

  1. Home
  2. Archives
  3. Vol. 6 No. 2 (2017): Summer 2017
  4. Articles

About the Journal

Editorial Team

Privacy Statement

Contact

The Role of Mitochondrial DNA (mtDNA) in the Development of Diabetic Retinopathy (DR): A Systematic Review

  • Negar Sarhangi
  • Fatemeh Khatami
  • Abbasali Keshtkar
  • Ramin Heshmat
  • Rasha Atlasi
  • Mahsa Mohammadamoli

Medical hypothesis discovery and innovation in ophthalmology, Vol. 6 No. 2 (2017), 1 June 2017
Published

  • View Article
  • Download
  • References
  • Share

Abstract

Diabetic Retinopathy (DR) is the most prevalent health problem, which is influenced by environmental and genetic factors with an increasing prevalence. The current systematic review is focused on mtDNA modification, including polymorphism and mutation/deletion, with a direct effect on DR. This systematic search was initially done through PubMed, Cochrane, EMBASE, SCOPUS, and Web of Science without a restriction on the years of publication. The terms searched included ‘‘mtDNA’’, ‘‘mitochondrial DNA’’, ‘‘diabetes’’, ‘‘diabetic’’, ‘‘retina’’, and ‘‘diabetic retinopathy’’. Animal, cohort, cross-sectional, and in vitro studies, as well as case series, case reports, review articles, and Letters to Editor were excluded from this research. From 1528 resulting searched articles, only 12 papers were finally chosen as the case-control studies considering  mtDNA gene and DR. Actually, of these 12 articles, 8 studies were concerned with mtDNA polymorphisms (UCP1, UCP2, ROMO-1, and Mn-SOD) and 4 articles were related to mtDNA mutation (A3243G mutation in tRNALeu(UUR) gene and mtDNA deletion (ΔmtDNA 4977)). Some conflicting results were found between the selected genetic modifications of mtDNA, such as Mn-SOD, UCP1, ΔmtDNA 4977, tRNALeu (UUR), and ROMO-1. Finally, A3243G mutation in the tRNALeu (UUR) gene and rs660339 and V16A polymorphisms of UCP2 and Mn-SOD genes were respectively considered as the most important factors in the pathogenesis of DR. 
  • Full Text PDF

References

Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-21. DOI: 10.1016/j.diabres.2011.10.029PMID: 22079683

Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2015;48:40-61. DOI: 10.1016/j.preteyeres.2015.05.001PMID: 25975734

Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48-58. DOI: 10.1056/NEJMra021678PMID: 14702427

Cheung N, Mitchell P, Wong TY. Diabetic Retinopath. The Lancet. 2010;376(9735):124-36. DOI: 10.1016/s0140-6736(09)62124-3

Simo-Servat O, Simo R, Hernandez C. Circulating Biomarkers of Diabetic Retinopathy: An Overview Based on Physiopathology. J Diabetes Res. 2016;2016:5263798. DOI: 10.1155/2016/5263798PMID: 27376090

Mishra M, Lillvis J, Seyoum B, Kowluru RA. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2016;57(10):4035-44. DOI: 10.1167/iovs.16-19073PMID: 27494345

Kowluru RA, Mishra M. Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci. 2015;58(6):556-63. DOI: 10.1007/s11427-015-4853-0PMID: 26025281

Fong DS, Aiello LP, Ferris FL, 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27(10):2540-53. PMID: 15451934

Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal. 2010;13(6):797-805. DOI: 10.1089/ars.2009.2932PMID: 20088705

Tewari S, Santos JM, Kowluru RA. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy. Antioxid Redox Signal. 2012;17(3):492-504. DOI: 10.1089/ars.2011.4333PMID: 22229649

Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, et al. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res Clin Pract. 1999;45(2-3):161-8. PMID: 10588369

Richter C. Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol. 1995;27(7):647-53. PMID: 7648420

Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen. 2010;51(5):417-26. DOI: 10.1002/em.20576PMID: 20544882

Mishra M, Kowluru RA. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2015;56(9):5133-42. DOI: 10.1167/iovs.15-16937PMID: 26241401

Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47(4):1594-9. DOI: 10.1167/iovs.05-1276PMID: 16565397

Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007;48(8):3805-11. DOI: 10.1167/iovs.06-1280PMID: 17652755

Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. 2003;35(11):1491-9. PMID: 14642397

Kowluru RA. Mitochondria damage in the pathogenesis of diabetic retinopathy and in the metabolic memory associated with its continued progression. Curr Med Chem. 2013;20(26):3226-33. PMID: 23745551

Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci. 2000;41(12):3972-8. PMID: 11053301

Arar NH, Freedman BI, Adler SG, Iyengar SK, Chew EY, Davis MD, et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest Ophthalmol Vis Sci. 2008;49(9):3839-45. DOI: 10.1167/iovs.07-1633PMID: 18765632

Looker HC, Nelson RG, Chew E, Klein R, Klein BE, Knowler WC, et al. Genome-wide linkage analyses to identify Loci for diabetic retinopathy. Diabetes. 2007;56(4):1160-6. DOI: 10.2337/db06-1299PMID: 17395753

Bregman JA, Herren DJ, Estopinal CB, Chocron IM, Harlow PA, Warden C, et al. Mitochondrial Haplogroups Affect Severity But Not Prevalence of Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(2):1346-51. DOI: 10.1167/iovs.16-20616PMID: 28245487

Crispim D, Fagundes NJ, Canani LH, Gross JL, Tschiedel B, Roisenberg I. Role of the mitochondrial m.16189T>C variant in type 2 diabetes mellitus in southern Brazil. Diabetes Res Clin Pract. 2006;74(2):204-6. DOI: 10.1016/j.diabres.2006.05.007PMID: 16784794

Simo-Servat O, Hernandez C, Simo R. Genetics in diabetic retinopathy: current concepts and new insights. Curr Genomics. 2013;14(5):289-99. DOI: 10.2174/13892029113149990008PMID: 24403848

Cho H, Sobrin L. Genetics of diabetic retinopathy. Curr Diab Rep. 2014;14(8):515. DOI: 10.1007/s11892-014-0515-zPMID: 24952107

Pillai G, Varky R. Genetics in diabetic retinopathy - A brief review. Kerala J Ophthalmol. 2016;28(1):14. DOI: 10.4103/0976-6677.193880

Brondani LA, de Souza BM, Duarte GC, Kliemann LM, Esteves JF, Marcon AS, et al. The UCP1 -3826A/G polymorphism is associated with diabetic retinopathy and increased UCP1 and MnSOD2 gene expression in human retina. Invest Ophthalmol Vis Sci. 2012;53(12):7449-57. DOI: 10.1167/iovs.12-10660PMID: 23033381

Crispim D, Fagundes NJ, dos Santos KG, Rheinheimer J, Boucas AP, de Souza BM, et al. Polymorphisms of the UCP2 gene are associated with proliferative diabetic retinopathy in patients with diabetes mellitus. Clin Endocrinol (Oxf). 2010;72(5):612-9. DOI: 10.1111/j.1365-2265.2009.03684.xPMID: 19681913

Fukuda M, Nakano S, Imaizumi N, Kitazawa M, Nishizawa M, Kigoshi T, et al. Mitochondrial DNA mutations are associated with both decreased insulin secretion and advanced microvascular complications in Japanese diabetic subjects. J Diabetes Complications. 1999;13(5-6):277-83. PMID: 10765002

Haghighi SF, Salehi Z, Sabouri MR, Abbasi N. [Polymorphic variant of MnSOD A16V and risk of diabetic retinopathy]. Mol Biol (Mosk). 2015;49(1):114-8. PMID: 25916115

Lee SJ, Choi MG. Association of manganese superoxide dismutase gene polymorphism (V16A) with diabetic macular edema in Korean type 2 diabetic patients. Metabolism. 2006;55(12):1681-8. DOI: 10.1016/j.metabol.2006.08.011PMID: 17142144

Petrovic MG, Cilensek I, Petrovic D. Manganese superoxide dismutase gene polymorphism (V16A) is associated with diabetic retinopathy in Slovene (Caucasians) type 2 diabetes patients. Dis Markers. 2008;24(1):59-64. PMID: 18057537

Petrovic MG, Kruzliak P, Petrovic D. The rs6060566 of the reactive oxygen species modulator 1 (Romo-1) gene affects Romo-1 expression and the development of diabetic retinopathy in Caucasians with type 2 diabetes. Acta Ophthalmol. 2015;93(8):e654-7. DOI: 10.1111/aos.12723PMID: 25824963

Shen Y, Wen Z, Wang N, Zheng Z, Liu K, Xia X, et al. Investigation of variants in UCP2 in Chinese type 2 diabetes and diabetic retinopathy. PLoS One. 2014;9(11):e112670. DOI: 10.1371/journal.pone.0112670PMID: 25396419

Vanita V. Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from north India. Diabetes Res Clin Pract. 2014;104(1):155-62. DOI: 10.1016/j.diabres.2013.12.059PMID: 24529564

Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Retinopathy in diabetes. Diabetes Care. 2004;27 Suppl 1:S84-7. PMID: 14693935

Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105-16. DOI: 10.1038/ng.520PMID: 20081858

Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5(2):97-105. DOI: 10.1016/S2213-8587(16)30396-5PMID: 27908689

Franzago M, Fraticelli F, Nicolucci A, Celentano C, Liberati M, Stuppia L, et al. Molecular Analysis of a Genetic Variants Panel Related to Nutrients and Metabolism: Association with Susceptibility to Gestational Diabetes and Cardiometabolic Risk in Affected Women. J Diabetes Res. 2017;2017:4612623. DOI: 10.1155/2017/4612623PMID: 28133617

Bazzaz JT, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJ, Larijani B, et al. eNOS gene polymorphism association with retinopathy in type 1 diabetes. Ophthalmic Genet. 2010;31(3):103-7. DOI: 10.3109/13816810.2010.482553PMID: 20565248

Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, Amiri P, Kouroshnia A, Bazzaz JT, et al. Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications. Diabetes Res Clin Pract. 2011;91(3):348-52. DOI: 10.1016/j.diabres.2010.12.030PMID: 21256614

Tavakkoly-Bazzaz J, Amoli MM, Pravica V, Chandrasecaran R, Boulton AJ, Larijani B, et al. VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep. 2010;37(7):3625-30. DOI: 10.1007/s11033-010-0013-6PMID: 20352346

Amoli MM, Amiri P, Alborzi A, Larijani B, Saba S, Tavakkoly-Bazzaz J. VEGF gene mRNA expression in patients with coronary artery disease. Mol Biol Rep. 2012;39(9):8595-9. DOI: 10.1007/s11033-012-1713-xPMID: 22711306

Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal. 2005;7(11-12):1581-87. DOI: 10.1089/ars.2005.7.1581PMID: 16356121

Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365-73. DOI: 10.1016/j.biopha.2005.07.002PMID: 16081237

Larijani S. Editorial Positions. Iranian J Endocrinol Metab. 1999;1(2):125-33.

Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012;13(12):878-90. DOI: 10.1038/nrg3275PMID: 23154810

Mishra M, Kowluru RA. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Invest Ophthalmol Vis Sci. 2014;55(10):6960-7. DOI: 10.1167/iovs.14-15020PMID: 25249609

DeBarmore B, Ashar F, Arking D, Kalyani R, Guallar E, Zhang Y, et al. Abstract P049: Mitochondrial DNA Copy Number and Diabetes in the ARIC Study. American Heart Association; 2017.

Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes. 2008;26(2):77-82. DOI: 10.2337/diaclin.26.2.77

Melendez-Ramirez LY, Richards RJ, Cefalu WT. Complications of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39(3):625-40. DOI: 10.1016/j.ecl.2010.05.009PMID: 20723824

Zhang Y, Meng N, Lv Z, Li H, Qu Y. The gene polymorphisms of UCP1 but not PPAR gamma and TCF7L2 are associated with diabetic retinopathy in Chinese type 2 diabetes mellitus cases. Acta Ophthalmol. 2015;93(3):e223-9. DOI: 10.1111/aos.12542PMID: 25274455

Dalgaard LT, Pedersen O. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia. 2001;44(8):946-65. DOI: 10.1007/s001250100596PMID: 11484071

Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, et al. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res. 2006;83(4):807-16. DOI: 10.1016/j.exer.2006.03.024PMID: 16750827

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-20. DOI: 10.1038/414813aPMID: 11742414

Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M, Seifi B, et al. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J Diabetes Metab Disord. 2014;13(1):84. DOI: 10.1186/s40200-014-0084-3PMID: 25197628

Alizadeh K, Tavangar S-M. Histologic findings in idiopathic carpal tunnel syndrome: Report of 209 cases. Arch Iranian Med. 2002;5(2):100.

Ambrosone CB, Freudenheim JL, Thompson PA, Bowman E, Vena JE, Marshall JR, et al. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 1999;59(3):602-6. PMID: 9973207

Kowluru RA, Kowluru V, Xiong Y, Ho YS. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic Biol Med. 2006;41(8):1191-6. DOI: 10.1016/j.freeradbiomed.2006.01.012PMID: 17015165

Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651-3. DOI: 10.1038/348651a0PMID: 2102678

van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1(5):368-71. DOI: 10.1038/ng0892-368PMID: 1284550

Holmes-Walker DJ, Mitchell P, Boyages SC. Does mitochondrial genome mutation in subjects with maternally inherited diabetes and deafness decrease severity of diabetic retinopathy? Diabet Med. 1998;15(11):946-52. DOI: 10.1002/(SICI)1096-9136(1998110)15:11<946::AID-DIA707>3.0.CO;2-LPMID: 9827849

  • Abstract Viewed: 1785 times
  • Full Text PDF Downloaded: 1414 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

ISSN: 2322-3219

This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
© Copyright 2012-2025, CC BY-NC 4.0. All Rights Reserved.