Cover Image

Corneal Biomechanical Properties and Thickness in Primary Congenital Glaucoma and Normal Eyes: A Comparative Study

Athar Zareei, Mohammad Reza Razeghinejad, Ramin Salouti

Abstract


The correct estimation of Intraocular Pressure (IOP) is the most important factor in the management of various types of glaucoma. Primary congenital glaucoma is a type of glaucoma that can cause blindness in the absence of control of the IOP. In this retrospective observational study, 95 eyes, including 48 healthy eyes and 47 eyes with Primary Congenital Glaucomatous (PCG) were studied. Two groups were matched for age, gender, and Goldman Applanation Tonometry (GIOP). Corneal Hysteresis (CH), Corneal Resistance Factor (CRF), and Goldman intraocular pressure were measured by ORA (IOPg), and corneal compensated Intraocular Pressure (IOPcc) was measured for each patient using the Ocular Response Analyzer (ORA). Central Corneal Thickness (CCT) was measured by ultrasonic pachymetry. For each patient, one eye was selected randomly. Student’s t-test and analytical regression were used for statistical analysis. The two groups were matched for age (P = 0.34), gender (P = 0.47), and GIOP (P = 0.17). Corneal hysteresis and CRF were significantly lower in PCG than in normal eyes (P < 0.0001), yet CCT was significantly thicker in PCG than normal eyes (P < 0.0001). The regression equation on the effect of CH, CRF, and CCT on GIOP in the PCG group showed that CH and CRF (P-value = 0.001 and P-value<0.0001) also had a significant effect yet CCT did not (P-value = 0.691). A significant decrease in CH and CRF was found in the PCG group compared to the normal controls. In the PCG group, the CCT was greater than normal. These results showed the usefulness of biomechanical properties (CH, CRF) in order to interpret IOP measurements. Furthermore, GIOP measurement may not be confined to consideration of CCT alone. A low CH and CRF value could be responsible for under-estimation of GIOP in the PCG group, in comparison to the normal controls.


References


Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141(5):868-75. doi: 10.1016/j.ajo. 2005.12.007 pmid: 16527231

Hager A, Loge K, Schroeder B, Fullhas MO, Wiegand W. Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dynamic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes. J Glaucoma. 2008;17(5):361-5. doi: 10.1097/IJG.0b01 3e31815c3ad3 pmid: 18703945

Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26(2):96-102. doi: 10.1097/ICU.0000000000000 130 pmid: 25611166

Zareei A, Razeghinejad MR, Salouti R. Influence of Corneal Biomechanical Properties on Intraocular Pressure Differences Between a non-contact ORA Tonometer and the Goldmann Applanation Tonometer in primary congenital glacomatous children. J Res Med Dent Sci. 2018;6(3):109-13. doi: 10.5455/jrmds.20186317

Tun TA, Atalay E, Baskaran M, Nongpiur ME, Htoon HM, Goh D, et al. Association of Functional Loss With the Biomechanical Response of the Optic Nerve Head to Acute Transient Intraocular Pressure Elevations. JAMA Ophthalmol. 2018;136(2):184-92. doi: 10.1001/jamaophthalmol.2017.6111 pmid: 29302683

Faramarzi A, Feizi S, Maghsoodlou A. Factors influencing intraocular pressure, corneal thickness and corneal biomechanics after congenital cataract surgery. Br J Ophthalmol. 2017;101(11):1493-9. doi: 10.1136/bjophthalmol-2016-310077 pmid: 28351927

Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, et al. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94(5):e317-24. doi: 10.1111/aos.12672 pmid: 25639340

Dascalescu D, Corbu C, Vasile P, Iancu R, Cristea M, Ionescu C, et al. The importance of assessing corneal biomechanical properties in glaucoma patients care - a review. Rom J Ophthalmol. 2016;60(4):219-25. pmid: 29450353

Amini H, Fakhraie G, Abolmaali S, Amini N, Daneshvar R. Central corneal thickness in Iranian congenital glaucoma patients. Middle East Afr J Ophthalmol. 2012;19(2):194-8. doi: 10.4103/0974-9233.95248 pmid: 22623858

Wygnanski-Jaffe T, Barequet IS. Central corneal thickness in congenital glaucoma. Cornea. 2006;25(8):923-5. doi: 10.1097/01.ico.0000225712.62 511.1c pmid: 17102668

Doozandeh A, Yazdani S, Ansari S, Pakravan M, Motevasseli T, Hosseini B, et al. Corneal profile in primary congenital glaucoma. Acta Ophthalmol. 2017;95(7):e575-e81. doi: 10.1111/aos.13357 pmid: 28139064

Lam AK, Chen D, Tse J. The usefulness of waveform score from the ocular response analyzer. Optom Vis Sci. 2010;87(3):195-9. doi: 10.1097/OPX.0b013e3181d 1d940 pmid: 20125059

Razeghinejad MR, Hosseini H, Namazi N. Biometric and corneal topographic characteristics in patients with Weill-Marchesani syndrome. J Cataract Refract Surg. 2009;35(6):1026-32. doi: 10.1016/j.jcrs.2009.01.029 pmid: 19465288

Kirwan C, O'Keefe M, Lanigan B. Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006;142(6):990-2. doi: 10.1016/j.ajo.2006.07.058 pmid: 17157583

Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2006;47(12):5337-47. doi: 10.1167/iovs.06-0557 pmid: 17122122

Muir KW, Jin J, Freedman SF. Central corneal thickness and its relationship to intraocular pressure in children. Ophthalmology. 2004;111(12):2220-3. doi: 10.1016/j.ophtha.2004.06.020 pmid: 15582077

Oberacher-Velten I, Prasser C, Lorenz B. Evolution of central corneal thickness in children with congenital glaucoma requiring glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):397-403. doi: 10.1007/s00417-007-0690-6 pmid: 17940789

Gatzioufas Z, Labiris G, Stachs O, Hovakimyan M, Schnaidt A, Viestenz A, et al. Biomechanical profile of the cornea in primary congenital glaucoma. Acta Ophthalmol. 2013;91(1):e29-34. doi: 10.1111/j.1755-3768.2012.02519.x pmid: 22937759

Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156-62. doi: 10.1016/j.jcrs.2004.10.044 pmid: 15721708

Touboul D, Roberts C, Kerautret J, Garra C, Maurice-Tison S, Saubusse E, et al. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg. 2008;34(4):616-22. doi: 10.1016/j.jcrs.2007.11.051 pmid: 18361984

Detry-Morel M, Jamart J, Pourjavan S. Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer. Eur J Ophthalmol. 2011;21(2):138-48. pmid: 20853262

Kaushik S, Pandav SS, Banger A, Aggarwal K, Gupta A. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol. 2012;153(5):840-9 e2. doi: 10.1016/j.ajo. 2011.10.032 pmid: 22310080

Dey A, David RL, Asokan R, George R. Can Corneal Biomechanical Properties Explain Difference in Tonometric Measurement in Normal Eyes? Optom Vis Sci. 2018;95(2):120-8. doi: 10.1097/OPX.000000000 0001175 pmid: 29370019

Farvardin M, Heidary F, Sayehmiri K, Gharebaghi R, Jabbarvand Behrooz M. A Comprehensive Meta-analysis on Intra Ocular Pressure and Central Corneal Thickness in Healthy Children. Iran J Public Health. 2017;46(6):724-32. pmid: 28828314

Nejabat M, Heidary F, Talebnejad MR, Salouti R, Nowroozzadeh MH, Masoumpour M, et al. Correlation Between Intraocular Pressure and Central Corneal Thickness in Persian Children. Ophthalmol Ther. 2016;5(2):235-43. doi: 10.1007/s40123-016-0063-5 pmid: 27709441


Full Text: Full Text PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.