IVORC
  • Register
  • Login

Medical hypothesis discovery and innovation in ophthalmology

  1. Home
  2. Archives
  3. Vol. 7 No. 3 (2018): Autumn 2018
  4. Articles

About the Journal

Editorial Team

Privacy Statement

Contact

Micropulse Transscleral Cyclophotocoagulation: A Hypothesis for the Ideal Parameters

  • Facundo G. Sanchez
  • Juan C. Peirano-Bonomi
  • Tomas M. Grippo

Medical hypothesis discovery and innovation in ophthalmology, Vol. 7 No. 3 (2018), 1 September 2018 , Page 94-100
Published 1 November 2018

  • View Article
  • Download
  • References
  • Share

Abstract

MicroPulse transscleral cyclophotocoagulation (IRIDEX Corp., Mountain View, CA) is a novel technique that uses repetitive micropulses of active diode laser (On cycles) interspersed with resting intervals (Off cycles). It has been proposed that the OFF cycles allow thermal dissipation and, therefore, reduce collateral damage. The literature suggests that Micropulse has a better safety profile compared to traditional continuous-wave cyclophotocoagulation. However, because it is a relatively new technique, there are no clear guidelines stating the ideal laser parameters that would allow the best balance between high and sustained effectiveness with minimal side effects. This research reviewed the literature to approximate ideal parameters for single-session treatment. To simplify the comparison between studies, this study used Joules (J) as a way to standardize the energy levels employed. The reviewed clinical publications allowed reduction of these parameters to a range between 112 and 150 J of total energy, which allows a moderate IOP lowering effect of around 30% with few/no complications. An additional narrowing of the parameters was achieved after analyzing recently published experimental data. These data suggest a different mechanism of action for the Micropulse, similar to that of the pilocarpine. This effect was maximum at 150 J. Since clinical studies show few or no complications, even at those energy levels, it could be hypothesized that the ideal parameters can be located at a point closer to 150 J. This data also leads to the concept of dosimetry; the capacity to dose mTSCPC treatment based on desired IOP lowering effect and risk exposure. Further prospective studies are needed to test the proposed evidence-based hypothesis.
  • Full Text PDF

References

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262-7. doi: 10.1136/bjo.2005.081224 pmid: 16488940

Gedde SJ, Schiffman JC, Feuer WJ, Herndon LW, Brandt JD, Budenz DL, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153(5):789-803 e2. doi: 10.1016/j.ajo.2011.10.026 pmid: 22245458

Spiegel D, Garcia-Feijoo J, Garcia-Sanchez J, Lamielle H. Coexistent primary open-angle glaucoma and cataract: preliminary analysis of treatment by cataract surgery and the iStent trabecular micro-bypass stent. Adv Ther. 2008;25(5):453-64. doi: 10.1007/s12325-008-0062-6 pmid: 18594784

Patel I, de Klerk TA, Au L. Manchester iStent study: early results from a prospective UK case series. Clin Exp Ophthalmol. 2013;41(7):648-52. doi: 10.1111/ceo.12098 pmid: 23448425

Arriola-Villalobos P, Martinez-de-la-Casa JM, Diaz-Valle D, Fernandez-Perez C, Garcia-Sanchez J, Garcia-Feijoo J. Combined iStent trabecular micro-bypass stent implantation and phacoemulsification for coexistent open-angle glaucoma and cataract: a long-term study. Br J Ophthalmol. 2012;96(5):645-9. doi: 10.1136/bjophthalmol-2011-300218 pmid: 22275344

Neuhann TH. Trabecular micro-bypass stent implantation during small-incision cataract surgery for open-angle glaucoma or ocular hypertension: Long-term results. J Cataract Refract Surg. 2015;41(12):2664-71. doi: 10.1016/j.jcrs.2015.06.032 pmid: 26796447

Samuelson TW, Katz LJ, Wells JM, Duh YJ, Giamporcaro JE, Group USiS. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118(3):459-67. doi: 10.1016/j.ophtha.2010.07.007 pmid: 20828829

Malvankar-Mehta MS, Chen YN, Iordanous Y, Wang WW, Costella J, Hutnik CM. iStent as a Solo Procedure for Glaucoma Patients: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(5):e0128146. doi: 10.1371/journal.pone.0128146 pmid: 26018579

Pastor SA, Singh K, Lee DA, Juzych MS, Lin SC, Netland PA, et al. Cyclophotocoagulation: a report by the American Academy of Ophthalmology. Ophthalmology. 2001;108(11):2130-8. pmid: 11713091

Liu GJ, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res. 1994;26(2):65-79. doi: 10.1159/000267395 pmid: 8196935

Kosoko O, Gaasterland DE, Pollack IP, Enger CL. Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology. 1996;103(8):1294-302. pmid: 8764801

Mistlberger A, Liebmann JM, Tschiderer H, Ritch R, Ruckhofer J, Grabner G. Diode laser transscleral cyclophotocoagulation for refractory glaucoma. J Glaucoma. 2001;10(4):288-93. pmid: 11558813

Aquino MC, Barton K, Tan AM, Sng C, Li X, Loon SC, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol. 2015;43(1):40-6. doi: 10.1111/ceo.12360 pmid: 24811050

Bloom PA, Tsai JC, Sharma K, Miller MH, Rice NS, Hitchings RA, et al. "Cyclodiode". Trans-scleral diode laser cyclophotocoagulation in the treatment of advanced refractory glaucoma. Ophthalmology. 1997;104(9):1508-19; discussion 19-20. pmid: 9307649

Quigley HA. Improved Outcomes for Transscleral Cyclophotocoagulation Through Optimized Treatment Parameters. J Glaucoma. 2018;27(8):674-81. doi: 10.1097/IJG.0000000000001008 pmid: 29916995

Tan AM, Chockalingam M, Aquino MC, Lim ZI, See JL, Chew PT. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol. 2010;38(3):266-72. doi: 10.1111/j.1442-9071.2010.02238.x pmid: 20447122

Abdelrahman AM, El Sayed YM. Micropulse Versus Continuous Wave Transscleral Cyclophotocoagulation in Refractory Pediatric Glaucoma. J Glaucoma. 2018;27(10):900-5. doi: 10.1097/IJG.0000000000001053 pmid: 30113515

Pantcheva MB, Kahook MY, Schuman JS, Noecker RJ. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br J Ophthalmol. 2007;91(2):248-52. doi: 10.1136/bjo.2006.103580 pmid: 16987899

Feldman RM, el-Harazi SM, LoRusso FJ, McCash C, Lloyd WC, 3rd, Warner PA. Histopathologic findings following contact transscleral semiconductor diode laser cyclophotocoagulation in a human eye. J Glaucoma. 1997;6(2):139-40. pmid: 9098823

Desmettre TJ, Mordon SR, Buzawa DM, Mainster MA. Micropulse and continuous wave diode retinal photocoagulation: visible and subvisible lesion parameters. Br J Ophthalmol. 2006;90(6):709-12. doi: 10.1136/bjo.2005.086942 pmid: 16531424

Maslin J, Chen P, Sinard N. Comparison of acute histopathological changes in human cadaver eyes after micropulse and continuous wave trans-scleral cyclophotocoagulation. Poster presented at: The 26th Annual AGS Meeting; Lauderdale, FL2016.

Johnstone M, Murray J. Transcleral Laser Induces Aqueous Outflow Pathway Motion & Reorganization. AGS 2017; Coronado, CA2017

Stamper RL, Lieberman MF, Drake MV. Becker-Shaffer's Diagnosis and Therapy of the Glaucomas: Elsevier Health Sciences; 2009.

Emanuel ME, Grover DS, Fellman RL, Godfrey DG, Smith O, Butler MR, et al. Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma. J Glaucoma. 2017;26(8):726-9. doi: 10.1097/IJG.0000000000000715 pmid: 28671927

Williams AL, Moster MR, Rahmatnejad K, Resende AF, Horan T, Reynolds M, et al. Clinical Efficacy and Safety Profile of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma. J Glaucoma. 2018;27(5):445-9. doi: 10.1097/IJG.0000000000000934 pmid: 29521718

Nguyen M, Noecker M. Micropulse Trans-Scleral Cyclophotocoagulation For The Treatment Of Glaucoma. Presented at: The 26th Annual AGS Meeting; Coronado, CA2017.

Shazly M, Tarek A. Outcomes Of Micropulse Transscleral Cyclophotocoagulation In Medically Uncontrolled Glaucoma. Presented at: The 26th Annual AGS Meeting; Coronado, CA2017.

Sanchez FG, Lerner F, Sampaolesi J, Noecker R, Becerra N, Iribarren G, et al. Efficacy and Safety of Micropulse(R) Transscleral Cyclophotocoagulation in Glaucoma. Arch Soc Esp Oftalmol. 2018. doi: 10.1016/j.oftal.2018.08.003 pmid: 30290978

Masi M, Lin SC, Babic K. Micropulse Transscleral Diode Laser Cyclophotocoagulation: Mid To Long-Term Results. Presented at: The 26th Annual AGS Meeting; Coronado, CA2017.

Sanchez F, Lerner F, Sampaolesi J, Noecker R, Becerra N, Iribarren G. Success Rate of Micropulse Transscleral Cyclophotocoagulation in Complex Glaucoma Based on Variable Treatment Duration. ARVO 2018; Honolulu, HI2018.

Radhakrishnan S, Wan J, Tran B. Outcomes Of Micropulse Cyclophotocoagulation - A Multicenter Review. Presented at: The 26th Annual AGS Meeting; Coronado, CA2017.

  • Abstract Viewed: 1283 times
  • Full Text PDF Downloaded: 1058 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

ISSN: 2322-3219

This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
© Copyright 2012-2023, CC BY-NC 4.0. All Rights Reserved.