In-Vivo Evaluation of Peripheral Refraction Changes with Single Vision and Multifocal Soft Contact Lenses
Medical hypothesis discovery and innovation in ophthalmology,
Vol. 7 No. 3 (2018),
1 September 2018
,
Page 112-118
Abstract
This study investigated in-vivo changes of peripheral refraction with commercially available single vision and multifocal soft contact lenses, utilizing different designs and various corrective power values. Starting at the fovea, wave-front aberrations were measured up to 30o nasal retinal eccentricity, in 10o increments, using a commercially available Shack-Hartmann aberrometer. Three different types of contact lenses were fitted in an adult subject’s right eye: Acuvue Oasys Single Vision (ASV), Proclear Multifocal D with 2.50 diopters (D) add power (PMD), and ArtMost SoftOK (SOK). Each lens type was fitted in corrective power values of -2.00 D, -4.00 D, and -6.00 D. Refractive errors were computed in power vector notation: The spherical equivalent (M), the Cartesian Jackson-Cross-Cylinder (J0), and the oblique Jackson Cross Cylinder (J45) from measured second order Zernike terms. Acuvue Oasys Single Vision lenses produced a slight myopic shift at 30o retinal periphery (-0.32 D ± 0.05) without significant differences between the various lens power values. Proclear Multifocal D lenses did not create clinically significant myopic shifts of at least -0.25 D. All SOK lenses produced clinically significant relative myopic shifts at both 20o (-0.61 D ± 0.08) and 30o (-1.42 D ± 0.15) without significant differences between the various lens power values. For all lens types and power values, off-axis astigmatism J0 was increased peripherally and reached clinical significance beyond 20o retinal eccentricity. The increased amount of off-axis astigmatism J0 did not show a significant difference for the same type of lenses with different dioptric power. However, at 30o retinal eccentricity, SOK lenses produced significantly higher amounts of off-axis astigmatism J0, compared with ASV and PMD lenses (SOK versus ASV versus PMD: -1.67 D ± 0.09, -0.81 D ± 0.07, and -0.72 D ± 0.15). Both ASV and SOK lenses showed no clinically significant differences in the amount of introduced astigmatic retinal image blur, with various lens power values. Proclear Multifocal D lenses showed a systematic increase of astigmatic retinal image blur with an increase of add power. At 30o retinal eccentricity, -6.00 D SOK lenses introduced 0.73 D astigmatic retinal image blur, while PMD and ASV lenses introduced 0.54 D and 0.37 D, respectively. In conclusion, relative peripheral refractions, measured in-vivo, were independent of the contact lenses central corrective power. The SOK contact lenses demonstrated a stronger capability in rendering relative peripheral myopic defocus into far periphery, compared to the other lens designs used in this study. This was accompanied by higher amounts of introduced astigmatic retinal image blur.References
Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381-91. doi: 10.1111/j.1475-1313.2005.00298.x pmid: 16101943
Javitt JC, Chiang YP. The socioeconomic aspects of laser refractive surgery. Arch Ophthalmol. 1994;112(12):1526-30. doi: 10.1001/archopht.1994.0 1090240032022 pmid: 7993206
Sperduto RD, Seigel D, Roberts J, Rowland M. Prevalence of myopia in the United States. Arch Ophthalmol. 1983;101(3):405-7. doi: 10.1001/archo pht.1983.01040010405011 pmid: 6830491
Saw SM, Shankar A, Tan SB, Taylor H, Tan DT, Stone RA, et al. A cohort study of incident myopia in Singaporean children. Invest Ophthalmol Vis Sci. 2006;47(5):1839-44. doi: 10.1167/iovs.05-1081 pmid: 16638989
Wildsoet CF. Active emmetropization--evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol Opt. 1997;17(4):279-90. doi: 10.1111/j.1475-1313.1997.tb00059.x pmid: 9390372
Wallman J, Gottlieb MD, Rajaram V, Fugate-Wentzek LA. Local retinal regions control local eye growth and myopia. Science. 1987;237(4810):73-7. doi: 10.1126/science.3603011 pmid: 3603011
Wallman J, Adams JI. Developmental aspects of experimental myopia in chicks: susceptibility, recovery and relation to emmetropization. Vision Res. 1987;27(7):1139-63. doi: 10.1016/0042-6989(87)9002 7-7 pmid: 3660666
Schaeffel F, Howland HC. Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vision Res. 1991;31(4):717-34. doi: 10.1016/0 042-6989(91)90011-S pmid: 1843772
Irving EL, Callender MG, Sivak JG. Inducing myopia, hyperopia, and astigmatism in chicks. Optom Vis Sci. 1991;68(5):364-8. doi: 10.1097/00006324-199105000 -00007 pmid: 1852398
Siegwart JT, Jr., Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Res. 1999;39(2):387-407. doi: 10.1016/S0042-6989(98)00150-3 pmid: 10326144
Graham B, Judge SJ. The effects of spectacle wear in infancy on eye growth and refractive error in the marmoset (Callithrix jacchus). Vision Res. 1999;39(2):189-206. doi: 10.1016/S0042-6989(98)001 89-8 pmid: 10326130
Hung LF, Crawford ML, Smith EL. Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med. 1995;1(8):761-5. doi: 10.1038/nm0895-761 pmid: 7585177
Smith EL, 3rd, Hung LF. The role of optical defocus in regulating refractive development in infant monkeys. Vision Res. 1999;39(8):1415-35. doi: 10.1016/S0042-6989(98)00229-6 pmid: 10343811
Smith EL, Hung LF, Ramamirtham R, Huang J, Qiao-Grider Y. Optically Imposed Hyperopic Defocus in the Periphery Can Produce Central Axial Myopia in Infant Monkeys. Invest Ophthalmol Vis Sci. 2007;48(5):1533-9.
Smith EL, 3rd, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46(11):3965-72. doi: 10.1167/iovs.05-0445 pmid: 16249469
Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497-523. doi: 10.1002/cne.902920402 pmid: 2324310
Logan NS, Gilmartin B, Wildsoet CF, Dunne MC. Posterior retinal contour in adult human anisomyopia. Invest Ophthalmol Vis Sci. 2004;45(7):2152-62. doi: 10.1167/iovs.03-0875 pmid: 15223789
Seidemann A, Schaeffel F, Guirao A, Lopez-Gil N, Artal P. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J Opt Soc Am A Opt Image Sci Vis. 2002;19(12):2363-73. doi: 10.1364/JOSAA.19.002363 pmid: 12469730
Millodot M. Effect of ametropia on peripheral refraction. Am J Optom Physiol Opt. 1981;58(9):691-5. doi: 10.1097/00006324-198109000-00001 pmid: 7294139
Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots. Ophthalmologica. 1971;163(4):209-15. doi: 10.1159/000306646 pmid: 5127164
Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510-9. doi: 10.1167/iovs.06-0562 pmid: 17525178
Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53(7):3913-9. doi: 10.1167/iovs.11-8453 pmid: 22577080
Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71-80. doi: 10.1080/02713680590907256 pmid: 15875367
Kang P, Swarbrick H. New Perspective on Myopia Control with Orthokeratology. Optom Vis Sci. 2016;93(5):497-503. doi: 10.1097/OPX.000000000000 0826 pmid: 26889820
Cho P, Cheung SW, Edwards MH, Fung J. An assessment of consecutively presenting orthokeratology patients in a Hong Kong based private practice. Clin Exp Optom. 2003;86(5):331-8. doi: 10.1111/j.1444-0938.2003.tb03129.x pmid: 14558855
Chan TC, Li EY, Wong VW, Jhanji V. Orthokeratology-associated infectious keratitis in a tertiary care eye hospital in Hong Kong. Am J Ophthalmol. 2014;158(6):1130-5 e2. doi: 10.1016/j.ajo.2014.08. 026 pmid: 25158307
Anstice NS, Phillips JR. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology. 2011;118(6):1152-61. doi: 10.1016/j .ophtha.2010.10.035 pmid: 21276616
Walline JJ, Greiner KL, McVey ME, Jones-Jordan LA. Multifocal contact lens myopia control. Optom Vis Sci. 2013;90(11):1207-14. doi: 10.1097/OPX.00000000000 00036 pmid: 24061152
Berntsen DA, Kramer CE. Peripheral defocus with spherical and multifocal soft contact lenses. Optom Vis Sci. 2013;90(11):1215-24. doi: 10.1097/OPX.000000 0000000066 pmid: 24076542
Kang P, Fan Y, Oh K, Trac K, Zhang F, Swarbrick HA. The effect of multifocal soft contact lenses on peripheral refraction. Optom Vis Sci. 2013;90(7):658-66. doi: 10.1097/OPX.0b013e3182990878 pmid: 23748848
Bakaraju RC, Fedtke C, Ehrmann K, Ho A. Comparing the relative peripheral refraction effect of single vision and multifocal contact lenses measured using an autorefractor and an aberrometer: A pilot study. J Optom. 2015;8(3):206-18. doi: 10.1016/j.optom.2015. 01.005 pmid: 25662364
Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98(1):40-5. doi: 10.1136/bjophthalmol-2013-303914 pmid: 24169657
Thibos LN, Wheeler W, Horner D. Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci. 1997;74(6):367-75. pmid: 9255814
Shen J, Clark CA, Soni PS, Thibos LN. Peripheral refraction with and without contact lens correction. Optom Vis Sci. 2010;87(9):642-55. doi: 10.1097/OPX .0b013e3181ea16ea pmid: 20601913
McLean RC, Wallman J. Severe astigmatic blur does not interfere with spectacle lens compensation. Invest Ophthalmol Vis Sci. 2003;44(2):449-57. doi: 10.1167/iovs.01-0670 pmid: 12556368
Thibos LN, Cheng X, Phillips J, Collins A. Astigmatic deprivation of chicks produces myopia, but not astigmatism. Invest Ophthalmol Vis Sci. 2001;42 (suppl.)(s58).
- Abstract Viewed: 1337 times
- Full Text PDF Downloaded: 1065 times