Cover Image

Repeatability and Reproducibility of Peripapillary Choroidal Thickness Using a Medical Image-Processing Software

Pedro Simoes, Pedro Silva, Miguel Cordeiro, Joao Costa


Although choroid has been shown to have a vital role in the pathophysiology of many ocular diseases, its role in the pathogenesis of several other conditions remains uncertain. The authors propose a novel methodology to establish a more accurate Peripapillary Choroidal Thickness (PPCT), using an image-processing software. This study sought to evaluate the reproducibility and repeatability of PPCT evaluation with ImageJ software in healthy volunteers. Forty-eight eyes of 24 volunteers were subjected to PPCT area determination, after imaging acquisition and recording with Spectral-domain Optical Coherence Tomography (SD-OCT) Heidelberg Spectralis®, during two different sessions, by two blinded assessors. The age of the subjects was 29.2 ± 4.5 years (mean ± SD). The Coefficient of Repeatability (CR) average measurements of PPCT area was 17.06 mm2 and 9.48 mm2 correspondingly, for the first and second examiners. Intra-class Correlation Coefficient (ICC) was 0.994 (95% CI 0.989 to 0.997) and 0.998 (95% CI 0.997 to 0.999). Inter-observer Concordance Correlation Coefficient (CCC) was 0.998 (95% CI 0.996 to 0.999) for both examiners. Intra-observer CCC ranged from 0.997 (95% CI 0.996 to 0.999) to 0.998 (95% CI 0.997 to 0.999), correspondingly, for the first and second examiners. The PPCT quantification by means of the proposed methodology showed good inter- and intra-observer agreement for both operators, indicating feasibility and good reproducibility of the proposed methodology. This approach might be used in different clinical settings and potentially contributes to elucidation of the choroid role in ocular pathology.


Olver JM. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye (Lond). 1990;4 ( Pt 2):262-72. doi: 10.1038/eye.1990.38 pmid: 2379644

Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB. Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol. 2014;3(4):111-5. pmid: 25756060

Akkaya S. Spectrum of pachychoroid diseases. Int Ophthalmol. 2018;38(5):2239-46. doi: 10.1007/s107 92-017-0666-4 pmid: 28766279

M AS, A AF. Review of en-face choroidal imaging using spectral-domain optical coherence tomography. Med Hypothesis Discov Innov Ophthalmol. 2013;2(3):69-73. pmid: 24600646

Lee MS, Grossman D, Arnold AC, Sloan FA. Incidence of nonarteritic anterior ischemic optic neuropathy: increased risk among diabetic patients. Ophthalmology. 2011;118(5):959-63. doi: 10.1016/j.ophtha.2011.01.054 pmid: 21439645

Fard MA, Abdi P, Kasaei A, Soltani Mogaddam R, Afzali M, Moghimi S. Peripapillary choroidal thickness in nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2015. doi: 10.1167/iovs.14-15661 pmid: 25813991

Schuster AK, Steinmetz P, Forster TM, Schlichtenbrede FC, Harder BC, Jonas JB. Choroidal thickness in nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 2014;158(6):1342-7 e1. doi: 10.1016/j.ajo.2014.09.008 pmid: 25217855

Dias-Santos A, Ferreira J, Abegao Pinto L, Vicente A, Anjos R, Cabugueira A, et al. Choroidal Thickness in Nonarteritic Anterior Ischaemic Optic Neuropathy: A Study with Optical Coherence Tomography. Neuroophthalmology. 2014;38(4):173-9. doi: 10.3109/01658107.2014.926943 pmid: 27928296

Kang S, Kim US. Using ImageJ to evaluate optic disc pallor in traumatic optic neuropathy. Korean J Ophthalmol. 2014;28(2):164-9. doi: 10.3341/kjo.2014.28.2.164 pmid: 24688260

Toprak I, Yildirim C, Yaylali V. Impaired photoreceptor inner segment ellipsoid layer reflectivity in mild diabetic retinopathy. Can J Ophthalmol. 2015;50(6):438-41. doi: 10.1016/j.jcjo.2015.07.009 pmid: 26651303

Lin LIK. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45(1):255. doi: 10.2307/2532051

Kottner J, Audige L, Brorson S, Donner A, Gajewski BJ, Hrobjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96-106. doi: 10.1016/j.jclinepi.2010.03.002 pmid: 21130355

Chen CC, Barnhart HX. Assessing agreement with repeated measures for random observers. Stat Med. 2011;30(30):3546-59. doi: 10.1002/sim.4353 pmid: 22095759

Vaz S, Falkmer T, Passmore AE, Parsons R, Andreou P. The case for using the repeatability coefficient when calculating test-retest reliability. PLoS One. 2013;8(9):e73990. doi: 10.1371/journal.pone.00739 90 pmid: 24040139

McAlinden C, Khadka J, Pesudovs K. Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg. 2015;41(12):2598-604. doi: 10.1016/j.jcrs.2015.06.029 pmid: 26796439

Garcia-Basterra I, Lahrach I, Morillo Sanchez MJ, Kamal-Salah R, Rius-Diaz F, Dawid Milner MS, et al. Analysis of peripapillary choroidal thickness in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2016;100(7):891-6. doi: 10.1136/bjophthalmol-2015-307526 pmid: 26453640

Bartlett JW, Frost C. Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol. 2008;31(4):466-75. doi: 10.1002/uog.5256 pmid: 18306169

Karpinski KF. Reliability of repeatability and reproducibility measures in collaborative trials. J Assoc Off Anal Chem. 1989;72(6):931-5. pmid: 2592316

Mauschitz MM, Roth F, Holz FG, Breteler MMB, Finger RP. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS). Invest Ophthalmol Vis Sci. 2017;58(5):2804-9. doi: 10.1167/iovs.17-21675 pmid: 28564701

Akil H, Dastiridou A, Marion K, Francis B, Chopra V. Repeatability, reproducibility, agreement characteristics of 2 SD-OCT devices for anterior chamber angle measurements. Can J Ophthalmol. 2017;52(2):166-70. doi: 10.1016/j.jcjo.2016.08.019 pmid: 28457285

Sabouri MR, Kazemnezhad E, Hafezi V. Assessment of macular thickness in healthy eyes using cirrus HD-OCT: a cross-sectional study. Med Hypothesis Discovery Innov Ophthalmol. 2016;5(3):104.

Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014;40(5):709-15. doi: 10.1016/j.jcrs.2013.09.020 pmid: 24656166

Full Text: Full Text PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.