Cover Image

The Effect of Glaucoma Medication on Choroidal Thickness Measured with Enhanced Depth-Imaging Optical Coherence Tomography

Serife BAYRAKTAR, Zafer CEBECI, Belgin IZGI, Kamber KASALI

Abstract


The aim of this study was to examine the effect of the glaucoma medication on Choroidal Thickness (CT) in those with Primary Open-Angle Glaucoma (POAG) and normal cases. This prospective study included 27 patients with newly diagnosed POAG (group 1; 49 eyes), undergoing glaucoma treatment, and 30 patients, whose treatment was terminated due to misdiagnosis (group 2; 57 eyes). Choroidal thickness was measured using Enhanced Depth Imaging (EDI) with Spectral Domain Optical Coherence Tomography (SD-OCT) at the first visit and almost one month later. In group 1, the mean Sub-Foveal CT (SFCT) was 301 ± 91 µm, the mean CT was 264 ± 87 µm at the nasal point, 1 mm to the fovea, and 271 ± 84 µm at the temporal point, 1 mm to the fovea. The second measurements were obtained as 39 ± 8.5 days after treatment began; the SFCT was 319 ± 85 µm (P = 0.0017), the nasal 1 mm CT was 275 ± 88 µm (P = 0.162), and the temporal 1mm CT was 291 ± 80 µm (P = 0.007). In group 2, the mean SFCT was 292 ± 100 µm, the nasal 1 mm CT was 254 ± 97 µm, and the temporal 1 mm CT was 261 ± 97 µm. The second measurements were obtained 37.5 ± 5.5 days after the treatment ended; the SFCT was 295 ± 107 µm (P = 0.212), the nasal 1 mm CT was 262 ± 104 µm (P = 0.709), and the temporal 1 mm CT was 266 ± 104 µm (P = 0.792). Glaucoma medication affects the CT as a marker for choroidal blood flow in patients with glaucoma. Further studies with larger sample sizes are required to examine each glaucoma medication subgroup.


References


Buus DR, Anderson DR. Peripapillary crescents and halos in normal-tension glaucoma and ocular hypertension. Ophthalmology. 1989;96(1):16-9. doi: 10.1016/s0161-6420(89)32930-7 pmid: 2919047

Nevarez J, Rockwood EJ, Anderson DR. The configuration of peripapillary tissue in unilateral glaucoma. Arch Ophthalmol. 1988;106(7):901-3. doi: 10.1001/archopht.1988.01060140047021 pmid: 3390 052

Rockwood EJ, Anderson DR. Acquired peripapillary changes and progression in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1988;226(6):510-5. doi: 10.1007/bf02169197 pmid: 3209077

Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39-57. doi: 10.1016/s1350-9462(98)00014-7 pmid: 9920498

Harris A, Jonescu-Cuypers CP. The impact of glaucoma medication on parameters of ocular perfusion. Curr Opin Ophthalmol. 2001;12(2):131-7. doi: 10.1097/0 0055735-200104000-00009 pmid: 11224720

Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268-79. doi: 10.1001/archopht.120.10.1268 pmid: 12365 904

Van Veldhuisen PC, Ederer F, Gaasterland DE, Sullivan EK, Beck A, Prum BE, et al. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-40. doi: 10.1016/s0002-9394(00)00538-9 pmid: 11024415

Fuchsjager-Mayrl G, Wally B, Georgopoulos M, Rainer G, Kircher K, Buehl W, et al. Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 2004;45(3):834-9. doi: 10.1167/iov s.03-0461 pmid: 14985298

Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol. 2001;132(1):63-9. doi: Doi 10.1016/S0002-9394(01)00871-6 pmid: 11438055

Sugiyama T, Schwartz B, Takamoto T, Azuma I. Evaluation of the circulation in the retina, peripapillary choroid and optic disk in normal-tension glaucoma. Ophthalmic Res. 2000;32(2-3):79-86. doi: 10.1159/000 055594 pmid: 10754439

Cristini G, Cennamo G, Daponte P. Choroidal thickness in primary glaucoma. Ophthalmologica. 1991;202(2):81-5. doi: 10.1159/000310179 pmid: 2057197

Spraul CW, Lang GE, Lang GK, Grossniklaus HE. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res. 2002;42(7):923-32. doi: 10.1016/s0042-6989(02)00022-6 pmid: 11927356

Yin ZQ, Vaegan, Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma. 1997;6(1):23-32. doi: 10.1097/00061198-199702000-00006 pmid: 9075077

Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496-500. doi: 10.1016/j.ajo.2008.05.032 pmid: 18639219

Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811-5. doi: 10.1016/j.ajo.2008.12.008 pmid: 19232559

Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58(5):387-429. doi: 10.1016/j.survophthal.2012. 12.001 pmid: 23916620

Park HY, Lee NY, Shin HY, Park CK. Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging optical coherence tomography. J Glaucoma. 2014;23(4):225-31. doi: 10.1097/IJG.0000000000000045 pmid: 24682006

Roberts KF, Artes PH, O'Leary N, Reis AS, Sharpe GP, Hutchison DM, et al. Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol. 2012;130(8):980-6. doi: 10.1001/archoph thalmol.2012.371 pmid: 22491392

Hirooka K, Tenkumo K, Fujiwara A, Baba T, Sato S, Shiraga F. Evaluation of peripapillary choroidal thickness in patients with normal-tension glaucoma. BMC Ophthalmol. 2012;12(1):29. doi: 10.1186/1471-2415-12-29 pmid: 22839368

Mwanza JC, Hochberg JT, Banitt MR, Feuer WJ, Budenz DL. Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(6):3430-5. doi: 10.1167/iovs.10-6600 pmid: 21357398

Maul EA, Friedman DS, Chang DS, Boland MV, Ramulu PY, Jampel HD, et al. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology. 2011;118(8):1571-9. doi: 10.1016/j. ophtha.2011.01.016 pmid: 21492939

Rhew JY, Kim YT, Choi KR. Measurement of subfoveal choroidal thickness in normal-tension glaucoma in Korean patients. J Glaucoma. 2014;23(1):46-9. doi: 10.1097/IJG.0b013e31825af772 pmid: 22668982

Mwanza JC, Sayyad FE, Budenz DL. Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci. 2012;53(10):6695-701. doi: 10.1167/iovs.12-10388 pmid: 22956612

Ehrlich JR, Peterson J, Parlitsis G, Kay KY, Kiss S, Radcliffe NM. Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res. 2011;92(3):189-94. doi: 10.1016/j.exer.2011.01.002 pmid: 21232535

Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53(11):721-48. pmid: 4982590

Jonas JB, Steinmetz P, Forster TM, Schlichtenbrede FC, Harder BC. Choroidal Thickness in Open-angle Glaucoma. J Glaucoma. 2015;24(8):619-23. doi: 10.1097/IJG.0000000000000063 pmid: 25415643

Toprak I, Yaylali V, Yildirim C. Age-based analysis of choroidal thickness and choroidal vessel diameter in primary open-angle glaucoma. Int Ophthalmol. 2016;36(2):171-7. doi: 10.1007/s10792-015-0092-4 pmid: 26077882

Wang W, Zhang X. Choroidal thickness and primary open-angle glaucoma: a cross-sectional study and meta-analysis. Invest Ophthalmol Vis Sci. 2014;55(9):6007-14. doi: 10.1167/iovs.14-14996 pmid: 25168904.

Ersoz MG, Mart DK, Ayintap E, Hazar L, Gunes IB, Adiyeke SK, et al. The factors influencing peripapillary choroidal thickness in primary open-angle glaucoma. Int Ophthalmol. 2017;37(4):827-33. doi: 10.1007/s10792-016-0346-9 pmid: 27620471

Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19(1):87-112. doi: 10.1016/s1350-9462(99)00006-3 pmid: 10614682

Martinez A, Gonzalez F, Capeans C, Perez R, Sanchez-Salorio M. Dorzolamide effect on ocular blood flow. Invest Ophthalmol Vis Sci. 1999;40(6):1270-5. pmid: 10235564

Harris A, Arend O, Chung HS, Kagemann L, Cantor L, Martin B. A comparative study of betaxolol and dorzolamide effect on ocular circulation in normal-tension glaucoma patients11Proprietary interest: none. Ophthalmology. 2000;107(3):430-4. doi: 10.1016/s0161-6420(99)00093-7

Desantis L. Preclinical Overview of Brinzolamide1. Surv Ophthalmol 2000;44:S119-S29. doi: 10.1016/s0039-6257(99)00108-3

Grunwald JE. Effect of topical timolol on the human retinal circulation. Invest Ophthalmol Vis Sci. 1986;27(12):1713-9. pmid: 2947874

Yoshida A, Feke GT, Ogasawara H, Goger DG, Murray DL, McMeel JW. Effect of timolol on human retinal, choroidal and optic nerve head circulation. Ophthalmic Res. 1991;23(3):162-70. doi: 10.1159/000267116 pmid: 1945288

Harris A, Martin B. Beta-blockers and ocular blood flow: a perspective. J Glaucoma. 1997;6(3):143-5. pmid: 9211135

Carlsson AM, Chauhan BC, Lee AA, LeBlanc RP. The effect of brimonidine tartrate on retinal blood flow in patients with ocular hypertension. Am J Ophthalmol. 2000;129(3):297-301. doi: 10.1016/s0002-9394(00)00389-5 pmid: 10704543

Lachkar Y, Migdal C, Dhanjil S. Effect of brimonidine tartrate on ocular hemodynamic measurements. Arch Ophthalmol. 1998;116(12):1591-4. doi: 10.1001/archo pht.116.12.1591 pmid: 9869786

Seong GJ, Lee HK, Hong YJ. Effects of 0.005% latanoprost on optic nerve head and peripapillary retinal blood flow. Ophthalmologica. 1999;213(6):355-9. doi: 10.1159/000027454 pmid: 10567866

Vetrugno M, Cantatore F, Gigante G, Cardia L. Latanoprost 0.005% in POAG: effects on IOP and ocular blood flow. Acta Ophthalmol Scand Suppl. 1998;76(227):40-1. doi: 10.1111/j.1600-0420.1998. tb00879.x pmid: 9972341

McKibbin M, Menage MJ. The effect of once-daily latanoprost on intraocular pressure and pulsatile ocular blood flow in normal tension glaucoma. Eye (Lond). 1999;13 ( Pt 1)(1):31-4. doi: 10.1038/eye .1999.6 pmid: 10396380

Vetrugno M, Cardascia N, Cantatore F, Sborgia C. Comparison of the effects of bimatoprost and timolol on intraocular pressure and pulsatile ocular blood flow in patients with primary open-angle glaucoma: A prospective, open-label, randomized, two-arm, parallel-group study. Curr Ther Res Clin Exp. 2004;65(6):444-54. doi: 10.1016/j.curtheres.2005.01 .004 pmid: 24672097

Koz OG, Ozsoy A, Yarangumeli A, Kose SK, Kural G. Comparison of the effects of travoprost, latanoprost and bimatoprost on ocular circulation: a 6-month clinical trial. Acta Ophthalmol Scand. 2007;85(8):838-43. doi: 10.1111/j.1600-0420.2007.00960.x pmid: 17680841


Full Text: Full Text PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.