Advances in Biomechanical Parameters for Screening of Refractive Surgery Candidates: A Review of the Literature, Part III
Medical hypothesis discovery and innovation in ophthalmology,
Vol. 8 No. 3 (2019),
20 September 2019
,
Page 219-240
Abstract
Corneal biomechanical properties have garnered significant interest in their relation to the development of ectatic corneal disease. Alongside the advent of corneal tomography and Scheimpflug imaging such as Pentacam and Galilei, there have been advances in assessing the cornea based on its biomechanical characteristics. Though the aforementioned imaging systems are highly capable of identifying morphologic abnormalities, they cannot assess mechanical stability of the cornea. This article, in contrast to Parts I and II of this article series, will focus on in vivo corneal biomechanical imaging systems. The two most readily available commercial systems include the Corvis ST and the Ocular Response Analyzer. Both of these systems aimed to characterize corneal biomechanics via distinct measurements. While in Parts I and II of this article series the authors focused on elevation, pachymetric, and keratometric data, the purpose of this article was to summarize biomechanical parameters and their clinical use in screening refractive surgery candidates. Moreover, this article explores biomechanical decompensation and its role in the development of corneal ectasia and keratoconus. There is a focus on the diagnostic accuracy of biomechanical indices in the identification of diseases such as keratoconus that may preclude a patient from undergoing refractive surgery.
References
Nyquist GW. Rheology of the cornea: Experimental techniques and results. Exp Eye Res. 1968;7(2):183-IN2. doi: 10.1016/s0014-4835(68)80064-8
Woo SL, Kobayashi AS, Lawrence C, Schlegel WA. Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Ann Biomed Eng. 1972;1(1):87-98. pmid: 4668693
Pinero DP, Alcon N. Corneal biomechanics: a review. Clin Exp Optom. 2015;98(2):107-16. doi: 10.1111/cxo.12230 pmid: 25470213
Boyce B, Jones R, Nguyen T, Grazier J. Stress-controlled viscoelastic tensile response of bovine cornea. J Biomech. 2006. doi: 10.1016/j.jbiomech.2006.12.001 pmid: 17240381
Hoeltzel DA, Altman P, Buzard K, Choe K. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114(2):202-15. doi: 10.1115/1.2891373 pmid: 1602763
Elsheikh A, Kassem W, Jones SW. Strain-rate sensitivity of porcine and ovine corneas. Acta of Bioengineering & Biomechanics. 2011;13(2).
Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85-9. doi: 10.3928/1081597X-20080101-15 pmid: 18269156
Roberts CJ, Dupps WJ, Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991-8. doi: 10.1016/j.jcrs.2014.04.013 pmid: 24774009
Provenzano PP, Lakes RS, Corr DT, Vanderby R, Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol. 2002;1(1):45-57. doi: 10.1007/s10237-002-0004-1 pmid: 14586706
Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156-62. doi: 10.1016/j.jcrs.2004.10.044 pmid: 15721708
Luz A, Faria-Correia F, Salomão M, Lopes B, Ambrósio R. Corneal biomechanics: Where are we? . J Curr Ophthalmol. 2016. pmid: 27579450
Ventura BV, Machado AP, Ambrosio R, Jr., Ribeiro G, Araujo LN, Luz A, et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg. 2013;29(9):637-43. doi: 10.3928/1081597X-20130819-05 pmid: 24016349
Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95(6):793-8. doi: 10.1136/bjo.2010.188300 pmid: 21310802
Dupps WJ, Jr., Roberts CJ. Corneal biomechanics: a decade later. J Cataract Refract Surg. 2014;40(6):857. doi: 10.1016/j.jcrs.2014.04.012 pmid: 24857433
Moshirfar M, Edmonds JN, Behunin NL, Christiansen SM. Corneal biomechanics in iatrogenic ectasia and keratoconus: A review of the literature. Oman J Ophthalmol. 2013;6(1):12-7. doi: 10.4103/0974-620X.111895 pmid: 23772119
Zarei-Ghanavati S, Ramirez-Miranda A, Yu F, Hamilton DR. Corneal deformation signal waveform analysis in keratoconic versus post-femtosecond laser in situ keratomileusis eyes after statistical correction for potentially confounding factors. J Cataract Refract Surg. 2012;38(4):607-14. doi: 10.1016/j.jcrs.2011.11.033 pmid: 22440435
Lam AK, Chen D, Tse J. The usefulness of waveform score from the ocular response analyzer. Optom Vis Sci. 2010;87(3):195-9. doi: 10.1097/OPX.0b013e3181d1d940 pmid: 20125059
Wolffsohn JS, Safeen S, Shah S, Laiquzzaman M. Changes of corneal biomechanics with keratoconus. Cornea. 2012;31(8):849-54. doi: 10.1097/ICO.0b013e318243e42d pmid: 22495031
Kerautret J, Colin J, Touboul D, Roberts C. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg. 2008;34(3):510-3. doi: 10.1016/j.jcrs.2007.11.018 pmid: 18299080
Comparison among Ocular Response Analyzer, Corvis ST and Goldmann applanation tonometry in healthy children. Int J Ophthalmol. 2018. doi: 10.18240/ijo.2018.08.13
Hong J, Xu J, Wei A, Deng SX, Cui X, Yu X, et al. A new tonometer--the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest Ophthalmol Vis Sci. 2013;54(1):659-65. doi: 10.1167/iovs.12-10984 pmid: 23307970
Pinero DP, Alcon N. In vivo characterization of corneal biomechanics. J Cataract Refract Surg. 2014;40(6):870-87. doi: 10.1016/j.jcrs.2014.03.021 pmid: 24857436
Ambrósio Jr R, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, et al. Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Revista Brasileira de Oftalmologia. 2013;72(2):99-102. doi: 10.1590/s0034-72802013000200005
Salomão M, Hoffling-Lima AL, Lopes B, Belin MW, Sena N, Dawson DG, et al. Recent developments in keratoconus diagnosis. Expert Review of Ophthalmology. 2018;13(6):329-41. doi: 10.1080/17469899.2018.1555036
Sinha Roy A, Shetty R, Kummelil MK. Keratoconus: a biomechanical perspective on loss of corneal stiffness. Indian J Ophthalmol. 2013;61(8):392-3. doi: 10.4103/0301-4738.116057 pmid: 23925321
Muniesa M, March A, Sanchez-de-la-Torre M, Huerva V, Jurjo C, Barbe F, et al. Corneal biomechanical properties in floppy eyelid syndrome. Cornea. 2015;34(5):521-4. doi: 10.1097/ICO.0000000000000396 pmid: 25747162
Prata TS, Lima VC, Guedes LM, Biteli LG, Teixeira SH, de Moraes CG, et al. Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients. Clin Exp Ophthalmol. 2012;40(7):682-8. doi: 10.1111/j.1442-9071.2012.02790.x pmid: 22429725
Chansangpetch S, Panpruk R, Manassakorn A, Tantisevi V, Rojanapongpun P, Hurst CP, et al. Impact of Myopia on Corneal Biomechanics in Glaucoma and Nonglaucoma Patients. Invest Ophthalmol Vis Sci. 2017;58(12):4990-6. doi: 10.1167/iovs.17-22219 pmid: 28979996
Sahin A, Bayer A, Ozge G, Mumcuoglu T. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. Invest Ophthalmol Vis Sci. 2009;50(10):4597-604. doi: 10.1167/iovs.08-2763 pmid: 19443722
Kotecha A, Oddone F, Sinapis C, Elsheikh A, Sinapis D, Sinapis A, et al. Corneal biomechanical characteristics in patients with diabetes mellitus. J Cataract Refract Surg. 2010;36(11):1822-8. doi: 10.1016/j.jcrs.2010.08.027 pmid: 21029887
Kopito R, Gaujoux T, Montard R, Touzeau O, Allouch C, Borderie V, et al. Reproducibility of viscoelastic property and intraocular pressure measurements obtained with the Ocular Response Analyzer. Acta Ophthalmol. 2011;89(3):e225-30. doi: 10.1111/j.1755-3768.2010.01957.x pmid: 20738262
Lopes BT, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P, Reisdorf S, et al. Repeatability and Reproducibility of Intraocular Pressure and Dynamic Corneal Response Parameters Assessed by the Corvis ST. J Ophthalmol. 2017;2017:8515742. doi: 10.1155/2017/8515742 pmid: 28676837
Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L, Jr. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29(8):558-63. doi: 10.3928/1081597X-20130719-06 pmid: 23909783
Hon Y, Lam AK. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90(1):e1-8. doi: 10.1097/OPX.0b013e318279eb87 pmid: 23238261
David VP, Stead RE, Vernon SA. Repeatability of ocular response analyzer metrics: a gender-based study. Optom Vis Sci. 2013;90(7):691-9. doi: 10.1097/OPX.0b013e318297da45 pmid: 23770655
Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52 Suppl 2:S109-14. doi: 10.1016/j.survophthal.2007.08.004 pmid: 17998034
Kotecha A, White E, Schlottmann PG, Garway-Heath DF. Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers. Ophthalmology. 2010;117(4):730-7. doi: 10.1016/j.ophtha.2009.09.020 pmid: 20122737
Kynigopoulos M, Schlote T, Kotecha A, Tzamalis A, Pajic B, Haefliger I. Repeatability of intraocular pressure and corneal biomechanical properties measurements by the ocular response analyser. Klin Monbl Augenheilkd. 2008;225(5):357-60. doi: 10.1055/s-2008-1027256 pmid: 18454372
Wasielica-Poslednik J, Berisha F, Aliyeva S, Pfeiffer N, Hoffmann EM. Reproducibility of ocular response analyzer measurements and their correlation with central corneal thickness. Graefes Arch Clin Exp Ophthalmol. 2010;248(11):1617-22. doi: 10.1007/s00417-010-1471-1 pmid: 20697730
Moreno-Montanes J, Maldonado MJ, Garcia N, Mendiluce L, Garcia-Gomez PJ, Segui-Gomez M. Reproducibility and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric implications. Invest Ophthalmol Vis Sci. 2008;49(3):968-74. doi: 10.1167/iovs.07-0280 pmid: 18326720
Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371-5. doi: 10.1016/j.jcrs.2007.04.021 pmid: 17662426
Touboul D, Benard A, Mahmoud AM, Gallois A, Colin J, Roberts CJ. Early biomechanical keratoconus pattern measured with an ocular response analyzer: curve analysis. J Cataract Refract Surg. 2011;37(12):2144-50. doi: 10.1016/j.jcrs.2011.06.029 pmid: 21978610
Fontes BM, Ambrosio R, Jr., Salomao M, Velarde GC, Nose W. Biomechanical and tomographic analysis of unilateral keratoconus. J Refract Surg. 2010;26(9):677-81. doi: 10.3928/1081597X-20091105-04 pmid: 19928695
Ambrosio R, Jr., Nogueira LP, Caldas DL, Fontes BM, Luz A, Cazal JO, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51(2):11-38. doi: 10.1097/IIO.0b013e31820f1d2d pmid: 21383577
Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomao MQ, Rodrigues-Barros S, Ambrosio R, Jr. Enhanced Ectasia Detection Using Corneal Tomography and Biomechanics. Am J Ophthalmol. 2019;197:7-16. doi: 10.1016/j.ajo.2018.08.054 pmid: 30201341
Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026-31. doi: 10.1167/iovs.04-0694 pmid: 17591868
Galletti JG, Pförtner T, Bonthoux FF. Improved keratoconus detection by ocular response analyzer testing after consideration of corneal thickness as a confounding factor. J Refract Surg. 2012;28(3):202-8.
Kirwan C, O'Malley D, O'Keefe M. Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica. 2008;222(5):334-7. doi: 10.1159/000145333 pmid: 18628636
Fontes BM, Ambrosio Junior R, Jardim D, Velarde GC, Nose W. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol. 2010;73(4):333-7. pmid: 20944935
Herber R, Ramm L, Spoerl E, Raiskup F, Pillunat LE, Terai N. Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg. 2019;45(6):778-88. doi: 10.1016/j.jcrs.2018.12.015 pmid: 30902432
Fontes BM, Ambrosio R, Jr., Velarde GC, Nose W. Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. Arq Bras Oftalmol. 2011;74(1):13-6. pmid: 21670900
Fontes BM, Ambrosio R, Jr., Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673-9. doi: 10.1016/j.ophtha.2009.09.023 pmid: 20138369
Sedaghat MR, Momeni-Moghaddam H, Ambrosio R, Jr., Heidari HR, Maddah N, Danesh Z, et al. Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Cornea. 2018;37(8):1025-34. doi: 10.1097/ICO.0000000000001639 pmid: 29847493
Hallahan KM, Sinha Roy A, Ambrosio R, Jr., Salomao M, Dupps WJ, Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121(2):459-68. doi: 10.1016/j.ophtha.2013.09.013 pmid: 24289916
Ahmadi Hosseini SM, Abolbashari F, Niyazmand H, Sedaghat MR. Efficacy of corneal tomography parameters and biomechanical characteristic in keratoconus detection. Cont Lens Anterior Eye. 2014;37(1):26-30. doi: 10.1016/j.clae.2013.07.007 pmid: 23910506
Mohammadpour M, Etesami I, Yavari Z, Naderan M, Abdollahinia F, Jabbarvand M. Ocular response analyzer parameters in healthy, keratoconus suspect and manifest keratoconus eyes. Oman J Ophthalmol. 2015;8(2):102-6. doi: 10.4103/0974-620X.159255 pmid: 26622137
Fontes BM, Ambrósio R, Velarde GC, Nosé W. Ocular Response Analyzer Measurements in Keratoconus with Normal Central Corneal Thickness Compared with Matched Normal Control Eyes. J Refract Surg. 2010. doi: 10.3928/1081597x-20100415-02
Vinciguerra R, Ambrosio R, Jr., Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg. 2016;32(12):803-10. doi: 10.3928/1081597X-20160629-01 pmid: 27930790
Ambrosio R, Jr., Lopes BT, Faria-Correia F, Salomao MQ, Buhren J, Roberts CJ, et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J Refract Surg. 2017;33(7):434-43. doi: 10.3928/1081597X-20170426-02 pmid: 28681902
Steinberg J, Amirabadi NE, Frings A, Mehlan J, Katz T, Linke SJ. Keratoconus Screening With Dynamic Biomechanical In Vivo Scheimpflug Analyses: A Proof-of-Concept Study. J Refract Surg. 2017;33(11):773-8. doi: 10.3928/1081597X-20170807-02 pmid: 29117418
Chan TC, Wang YM, Yu M, Jhanji V. Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol. 2018;102(1):42-7. doi: 10.1136/bjophthalmol-2017-310355 pmid: 28559422
Elham R, Jafarzadehpur E, Hashemi H, Amanzadeh K, Shokrollahzadeh F, Yekta A, et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J Curr Ophthalmol. 2017;29(3):175-81. doi: 10.1016/j.joco.2017.05.002 pmid: 28913507
Steinberg J, Katz T, Lucke K, Frings A, Druchkiv V, Linke SJ. Screening for Keratoconus With New Dynamic Biomechanical In Vivo Scheimpflug Analyses. Cornea. 2015;34(11):1404-12. doi: 10.1097/ICO.0000000000000598 pmid: 26356751
Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651-9. doi: 10.1167/iovs.13-13715 pmid: 24833745
Tian L, Huang YF, Wang LQ, Bai H, Wang Q, Jiang JJ, et al. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol. 2014;2014:147516. doi: 10.1155/2014/147516 pmid: 24800059
Luz A, Lopes B, Hallahan KM, Valbon B, Ramos I, Faria-Correia F, et al. Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. J Refract Surg. 2016;32(7):479-94. doi: 10.3928/1081597X-20160502-02 pmid: 27400080
Johnson RD, Nguyen MT, Lee N, Hamilton DR. Corneal biomechanical properties in normal, forme fruste keratoconus, and manifest keratoconus after statistical correction for potentially confounding factors. Cornea. 2011;30(5):516-23. doi: 10.1097/ICO.0b013e3181f0579e pmid: 21045653
Labiris G, Giarmoukakis A, Gatzioufas Z, Sideroudi H, Kozobolis V, Seitz B. Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus. J Cataract Refract Surg. 2014;40(6):999-1005. doi: 10.1016/j.jcrs.2013.08.064 pmid: 24713585
Galletti JD, Ruisenor Vazquez PR, Fuentes Bonthoux F, Pfortner T, Galletti JG. Multivariate Analysis of the Ocular Response Analyzer's Corneal Deformation Response Curve for Early Keratoconus Detection. J Ophthalmol. 2015;2015:496382. doi: 10.1155/2015/496382 pmid: 26075085
Kirgiz A, Karaman Erdur S, Atalay K, Gurez C. The Role of Ocular Response Analyzer in Differentiation of Forme Fruste Keratoconus From Corneal Astigmatism. Eye Contact Lens. 2019;45(2):83-7. doi: 10.1097/ICL.0000000000000541 pmid: 30265255
Hashemi H, Beiranvand A, Yekta A, Asharlous A, Khabazkhoob M. Biomechanical properties of early keratoconus: Suppressed deformation signal wave. Cont Lens Anterior Eye. 2017;40(2):104-8. doi: 10.1016/j.clae.2016.12.004 pmid: 27956045
Ruisenor Vazquez PR, Delrivo M, Bonthoux FF, Pfortner T, Galletti JG. Combining ocular response analyzer metrics for corneal biomechanical diagnosis. J Refract Surg. 2013;29(9):596-602. doi: 10.3928/1081597X-20130710-01 pmid: 23848186
Luz A, Lopes B, Hallahan KM, Valbon B, Fontes B, Schor P, et al. Discriminant Value of Custom Ocular Response Analyzer Waveform Derivatives in Forme Fruste Keratoconus. Am J Ophthalmol. 2016;164:14-21. doi: 10.1016/j.ajo.2015.12.020 pmid: 26743618
Pena-Garcia P, Peris-Martinez C, Abbouda A, Ruiz-Moreno JM. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech. 2016;49(3):353-63. doi: 10.1016/j.jbiomech.2015.12.031 pmid: 26777602
Catalan-Lopez S, Cadarso-Suarez L, Lopez-Raton M, Cadarso-Suarez C. Corneal Biomechanics in Unilateral Keratoconus and Fellow Eyes with a Scheimpflug-based Tonometer. Optom Vis Sci. 2018;95(7):608-15. doi: 10.1097/OPX.0000000000001241 pmid: 29957740
Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrosio R, Jr. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg. 2019;45(3):328-36. doi: 10.1016/j.jcrs.2018.10.030 pmid: 30527442
Ambrósio R, Faria-Correia F, Ramos I, Valbon BF, Lopes B, Jardim D, et al. Enhanced Screening for Ectasia Susceptibility Among Refractive Candidates: The Role of Corneal Tomography and Biomechanics. Curr Ophthalmol Rep. 2013;1(1):28-38. doi: 10.1007/s40135-012-0003-z
Koc M, Aydemir E, Tekin K, Inanc M, Kosekahya P, Kiziltoprak H. Biomechanical Analysis of Subclinical Keratoconus With Normal Topographic, Topometric, and Tomographic Findings. J Refract Surg. 2019;35(4):247-52. doi: 10.3928/1081597X-20190226-01 pmid: 30984982
Chan TCY, Wang YM, Yu M, Jhanji V. Comparison of Corneal Tomography and a New Combined Tomographic Biomechanical Index in Subclinical Keratoconus. J Refract Surg. 2018;34(9):616-21. doi: 10.3928/1081597X-20180705-02 pmid: 30199566
Kling S, Hafezi F. Corneal biomechanics - a review. Ophthalmic Physiol Opt. 2017;37(3):240-52. doi: 10.1111/opo.12345 pmid: 28125860
Moshirfar M, Feiz V, Vitale A, Wegelin J, Basavanthappa S, Wolsey D. Endophthalmitis after Uncomplicated Cataract Surgery with the Use of Fourth-Generation Fluoroquinolones. Ophthalmol. 2007. pmid: 17184840
Lau W, Pye D. A clinical description of Ocular Response Analyzer measurements. Invest Ophthalmol Vis Sci. 2011;52(6):2911-6. doi: 10.1167/iovs.10-6763 pmid: 21273535
Kamiya K, Shimizu K, Ohmoto F. Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg. 2009;25(10):888-93. doi: 10.3928/1081597X-20090917-10 pmid: 19835329
Schweitzer C, Roberts CJ, Mahmoud AM, Colin J, Maurice-Tison S, Kerautret J. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci. 2010;51(5):2403-10. doi: 10.1167/iovs.09-3689 pmid: 19907025
Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng. 2011;13:269-95. doi: 10.1146/annurev-bioeng-070909-105243 pmid: 21568714
Pniakowska Z, Jurowski P. Detection of the early keratoconus based on corneal biomechanical properties in the refractive surgery candidates. Indian J Ophthalmol. 2016;64(2):109-13. doi: 10.4103/0301-4738.179725 pmid: 27050343
Saad A, Lteif Y, Azan E, Gatinel D. Biomechanical properties of keratoconus suspect eyes. Invest Ophthalmol Vis Sci. 2010;51(6):2912-6. doi: 10.1167/iovs.09-4304 pmid: 20042662
Kozobolis V, Sideroudi H, Giarmoukakis A, Gkika M, Labiris G. Corneal biomechanical properties and anterior segment parameters in forme fruste keratoconus. Eur J Ophthalmol. 2012;22(6):920-30. doi: 10.5301/ejo.5000184 pmid: 22865401
McMonnies CW. Assessing corneal hysteresis using the Ocular Response Analyzer. Optom Vis Sci. 2012;89(3):E343-9. doi: 10.1097/OPX.0b013e3182417223 pmid: 22198797
Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282-9. doi: 10.3109/02713683.2014.922193 pmid: 24871227
Huseynova T, Waring GOt, Roberts C, Krueger RR, Tomita M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol. 2014;157(4):885-93. doi: 10.1016/j.ajo.2013.12.024 pmid: 24388837
Miki A, Maeda N, Ikuno Y, Asai T, Hara C, Nishida K. Factors Associated With Corneal Deformation Responses Measured With a Dynamic Scheimpflug Analyzer. Invest Ophthalmol Vis Sci. 2017;58(1):538-44. doi: 10.1167/iovs.16-21045 pmid: 28129421
Shah S, Laiquzzaman M. Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. Cont Lens Anterior Eye. 2009;32(3):129-32; quiz 51. doi: 10.1016/j.clae.2008.12.009 pmid: 19233712
Shah S, Laiquzzaman M, Cunliffe I, Mantry S. The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye. 2006;29(5):257-62. doi: 10.1016/j.clae.2006.09.006 pmid: 17085066
Roberts CJ, Liu J. Corneal Biomechanics: from theory to practice: Kugler Publications; 2017.
Pinero DP, Alio JL, Barraquer RI, Michael R, Jimenez R. Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. Invest Ophthalmol Vis Sci. 2010;51(4):1948-55. doi: 10.1167/iovs.09-4177 pmid: 19907021
Kwon TH, Ghaboussi J, Pecknold DA, Hashash Y. Role of corneal biomechanical properties in applanation tonometry measurements. J Refract Surg. 2010;26(7):512-9. doi: 10.3928/1081597X-20090814-02 pmid: 19715267
Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31(1):146-55. doi: 10.1016/j.jcrs.2004.09.031 pmid: 15721707
Bayoumi NH, Bessa AS, El Massry AA. Ocular response analyzer and goldmann applanation tonometry: a comparative study of findings. J Glaucoma. 2010;19(9):627-31. doi: 10.1097/IJG.0b013e3181ca7e01 pmid: 20179628
Oncel B, Dinc U, Orge F, Yalvac B. Comparison of IOP measurement by ocular response analyzer, dynamic contour, Goldmann applanation, and noncontact tonometry. Eur J Ophthalmol. 2009;19(6):936-41. pmid: 19882585
Ehrlich JR, Haseltine S, Shimmyo M, Radcliffe NM. Evaluation of agreement between intraocular pressure measurements using Goldmann applanation tonometry and Goldmann correlated intraocular pressure by Reichert's ocular response analyser. Eye (Lond). 2010;24(10):1555-60. doi: 10.1038/eye.2010.83 pmid: 20508652
Endophthalmitis Study Group ESoC, Refractive S. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg. 2007;33(6):978-88. doi: 10.1016/j.jcrs.2007.02.032 pmid: 17531690
Labiris G, Gatzioufas Z, Sideroudi H, Giarmoukakis A, Kozobolis V, Seitz B. Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol. 2013;91(4):e258-62. doi: 10.1111/aos.12056 pmid: 23557430
Goebels S, Eppig T, Wagenpfeil S, Cayless A, Seitz B, Langenbucher A. Staging of keratoconus indices regarding tomography, topography, and biomechanical measurements. Am J Ophthalmol. 2015;159(4):733-8. doi: 10.1016/j.ajo.2015.01.014 pmid: 25634534
Lopes B, Luz A, Fontes B, Ramos IC, Correia F, Schor P. Evaluation of Ocular Biomechanical Indices to Distinguish Normal from Keratoconus Eyes. Int J Keratoconus Ectatic Corneal Dis. 2012;1(3):145-50. doi: 10.5005/jp-journals-10025-1028
Goebels S, Eppig T, Wagenpfeil S, Cayless A, Seitz B, Langenbucher A. Complementary Keratoconus Indices Based on Topographical Interpretation of Biomechanical Waveform Parameters: A Supplement to Established Keratoconus Indices. Computational and Mathematical Methods in Medicine. 2017;2017:1-7. doi: 10.1155/2017/5293573
Ambrosio R, Jr., Correia FF, Lopes B, Salomao MQ, Luz A, Dawson DG, et al. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. Open Ophthalmol J. 2017;11:176-93. doi: 10.2174/1874364101711010176 pmid: 28932334
Vinciguerra R, Elsheikh A, Roberts CJ, Ambrosio R, Jr., Kang DS, Lopes BT, et al. Influence of Pachymetry and Intraocular Pressure on Dynamic Corneal Response Parameters in Healthy Patients. J Refract Surg. 2016;32(8):550-61. doi: 10.3928/1081597X-20160524-01 pmid: 27505316
Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, et al. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer. J Refract Surg. 2017;33(4):266-73. doi: 10.3928/1081597X-20161221-03 pmid: 28407167
Vinciguerra R, Romano V, Arbabi EM, Brunner M, Willoughby CE, Batterbury M, et al. In Vivo Early Corneal Biomechanical Changes After Corneal Cross-linking in Patients With Progressive Keratoconus. J Refract Surg. 2017;33(12):840-6. doi: 10.3928/1081597X-20170922-02 pmid: 29227513
Bao F, Deng M, Wang Q, Huang J, Yang J, Whitford C, et al. Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. Exp Eye Res. 2015;137:11-7. doi: 10.1016/j.exer.2015.05.018 pmid: 26026878
Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci. 2013;54(7):5078-85. doi: 10.1167/iovs.13-12509 pmid: 23821200
Fuchsluger TA, Brettl S, Geerling G, Kaisers W, Franko Zeitz P. Biomechanical assessment of healthy and keratoconic corneas (with/without crosslinking) using dynamic ultrahigh-speed Scheimpflug technology and the relevance of the parameter (A1L-A2L). Br J Ophthalmol. 2019;103(4):558-64. doi: 10.1136/bjophthalmol-2017-311627 pmid: 29871966
Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, et al. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg. 2014;30(11):785-91. doi: 10.3928/1081597X-20140930-01 pmid: 25291757
Lee H, Roberts CJ, Kim TI, Ambrosio R, Jr., Elsheikh A, Yong Kang DS. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2017;43(12):1495-503. doi: 10.1016/j.jcrs.2017.08.019 pmid: 29335093
Hirasawa K, Nakakura S, Nakao Y, Fujino Y, Matsuura M, Murata H, et al. Changes in Corneal Biomechanics and Intraocular Pressure Following Cataract Surgery. Am J Ophthalmol. 2018;195:26-35. doi: 10.1016/j.ajo.2018.07.025 pmid: 30071213
Jedzierowska M, Koprowski R. Novel dynamic corneal response parameters in a practice use: a critical review. Biomed Eng Online. 2019;18(1):17. doi: 10.1186/s12938-019-0636-3 pmid: 30760270
Vinciguerra R, Ambrosio R, Jr., Roberts CJ, Elsheikh A, Lopes B, Vinciguerra P. Should the Corvis Biomechanical Index (CBI) Include Corneal Thickness Parameters? J Refract Surg. 2018;34(3):213-6. doi: 10.3928/1081597X-20180103-01 pmid: 29522232
Joda AA, Shervin MM, Kook D, Elsheikh A. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin. 2016;19(9):943-53. pmid: 27049961
Ambrósio R, Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg. 2003;19(1):24-9.
Rabinowitz YS, McDonnell PJ. Corneal Topography of Early Keratoconus: Editor. Am J Ophthalmol. 1989;108(6):746-7. doi: 10.1016/0002-9394(89)90885-4
Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest ophthalmol vis sci. 1995;36(7):1327-35.
Belin MW, Ambrosio R. Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol. 2013;61(8):401-6. doi: 10.4103/0301-4738.116059 pmid: 23925323
Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862-9. doi: 10.1016/j.jcrs.2014.04.019 pmid: 24857435
Scarcelli G, Besner S, Pineda R, Kalout P, Yun SH. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 2015;133(4):480-2. doi: 10.1001/jamaophthalmol.2014.5641 pmid: 25611213
Jiang MS, Zhu JY, Li X, Zhang NN, Zhang XD. Corneal Biomechanical Properties After Penetrating Keratoplasty or Deep Anterior Lamellar Keratoplasty Using the Ocular Response Analyzer: A Meta-Analysis. Cornea. 2017;36(3):310-6. doi: 10.1097/ICO.0000000000001113 pmid: 28002108
Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg. 2014;30(6):408-14. doi: 10.3928/1081597X-20140513-02 pmid: 24972407
Long Q, Wang J, Yang X, Jin Y, Ai F, Li Y. Assessment of Corneal Biomechanical Properties by CorVis ST in Patients with Dry Eye and in Healthy Subjects. J Ophthalmol. 2015;2015:380624. doi: 10.1155/2015/380624 pmid: 26634151
Chua J, Nongpiur ME, Zhao W, Tham YC, Gupta P, Sabanayagam C, et al. Comparison of Corneal Biomechanical Properties between Indian and Chinese Adults. Ophthalmology. 2017;124(9):1271-9. doi: 10.1016/j.ophtha.2017.03.055 pmid: 28461014
Haseltine SJ, Pae J, Ehrlich JR, Shammas M, Radcliffe NM. Variation in corneal hysteresis and central corneal thickness among black, hispanic and white subjects. Acta Ophthalmol. 2012;90(8):e626-31. doi: 10.1111/j.1755-3768.2012.02509.x pmid: 22938724
Garcia-Porta N, Fernandes P, Queiros A, Salgado-Borges J, Parafita-Mato M, Gonzalez-Meijome JM. Corneal biomechanical properties in different ocular conditions and new measurement techniques. ISRN Ophthalmol. 2014;2014:724546. doi: 10.1155/2014/724546 pmid: 24729900
Goldich Y, Barkana Y, Gerber Y, Rasko A, Morad Y, Harstein M, et al. Effect of diabetes mellitus on biomechanical parameters of the cornea. J Cataract Refract Surg. 2009;35(4):715-9. doi: 10.1016/j.jcrs.2008.12.013 pmid: 19304094
Ramm L, Herber R, Spoerl E, Pillunat LE, Terai N. Measurement of Corneal Biomechanical Properties in Diabetes Mellitus Using the Ocular Response Analyzer and the Corvis ST. Cornea. 2019;38(5):595-9. doi: 10.1097/ICO.0000000000001879 pmid: 30681520
Sedaghat M-R, Askarizadeh F, Nematy M, Narooie-Noori F, Heravian J, Rakhshandadi T, et al. The Relationship of Body Mass Index and Blood Pressure with Corneal Biomechanical Parameters in Healthy Subjects. Med Hypothesis Discov Innov Ophthalmol. 2017;6(3):89.
Salouti R, Khalili MR, Zamani M, Ghoreyshi M, Nowroozzadeh MH. Assessment of the changes in corneal biomechanical properties after collagen cross-linking in patients with keratoconus. J Curr Ophthalmol. 2019. doi: 10.1016/j.joco.2019.02.002
Mazzotta C, Balestrazzi A, Traversi C, Baiocchi S, Caporossi T, Tommasi C, et al. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea. 2007;26(4):390-7. doi: 10.1097/ICO.0b013e318030df5a pmid: 17457184
Mazzotta C, Traversi C, Baiocchi S, Caporossi O, Bovone C, Sparano MC, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol. 2008;146(4):527-33. doi: 10.1016/j.ajo.2008.05.042 pmid: 18672225
Sedaghat MR, Momeni-Moghaddam H, Ambrosio R, Jr., Roberts CJ, Yekta AA, Danesh Z, et al. Long-term Evaluation of Corneal Biomechanical Properties After Corneal Cross-linking for Keratoconus: A 4-Year Longitudinal Study. J Refract Surg. 2018;34(12):849-56. doi: 10.3928/1081597X-20181012-02 pmid: 30540368
Viswanathan D, Kumar NL, Males JJ, Graham SL. Relationship of Structural Characteristics to Biomechanical Profile in Normal, Keratoconic, and Crosslinked Eyes. Cornea. 2015;34(7):791-6. doi: 10.1097/ICO.0000000000000434 pmid: 25850703
Alio JL, Pinero DP, Aleson A, Teus MA, Barraquer RI, Murta J, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg. 2011;37(3):552-68. doi: 10.1016/j.jcrs.2010.10.046 pmid: 21333878
Steinberg J, Siebert M, Katz T, Frings A, Mehlan J, Druchkiv V, et al. Tomographic and Biomechanical Scheimpflug Imaging for Keratoconus Characterization: A Validation of Current Indices. J Refract Surg. 2018;34(12):840-7. doi: 10.3928/1081597X-20181012-01 pmid: 30540367
Chan C, Saad A, Randleman JB, Harissi-Dagher M, Chua D, Qazi M, et al. Analysis of cases and accuracy of 3 risk scoring systems in predicting ectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2018;44(8):979-92. doi: 10.1016/j.jcrs.2018.05.013 pmid: 30115298
Pinero DP, Nieto JC, Lopez-Miguel A. Characterization of corneal structure in keratoconus. J Cataract Refract Surg. 2012;38(12):2167-83. doi: 10.1016/j.jcrs.2012.10.022 pmid: 23195256
Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg. 2016;42(2):284-95. doi: 10.1016/j.jcrs.2015.09.021 pmid: 27026454
Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB. Distinguishing Highly Asymmetric Keratoconus Eyes Using Combined Scheimpflug and Spectral-Domain OCT Analysis. Ophthalmology. 2018;125(12):1862-71. doi: 10.1016/j.ophtha.2018.06.020 pmid: 30055838
Luz A, Ramos I, Salomão MQ, Correia FF. Corneal Deformation Response with Dynamic Ultra-high-speed Scheimpflug Imaging for Detecting Ectatic Corneas. Int J Keratoconus Ectatic Corneal Dis. 2016;5(1):1-5. doi: 10.5005/jp-journals-10025-1113
Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425-33. doi: 10.1016/j.ophtha.2012.06.023 pmid: 22917888
Silverman RH, Urs R, RoyChoudhury A, Archer TJ, Gobbe M, Reinstein DZ. Combined tomography and epithelial thickness mapping for diagnosis of keratoconus. Eur J Ophthalmol. 2017;27(2):129-34. doi: 10.5301/ejo.5000850 pmid: 27515569
Catalan S, Cadarso L, Esteves F, Salgado-Borges J, Lopez M, Cadarso C. Assessment of Corneal Epithelial Thickness in Asymmetric Keratoconic Eyes and Normal Eyes Using Fourier Domain Optical Coherence Tomography. J Ophthalmol. 2016;2016:5697343. doi: 10.1155/2016/5697343 pmid: 27379181
Li Y, Meisler DM, Tang M, Lu AT, Thakrar V, Reiser BJ, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115(12):2159-66. doi: 10.1016/j.ophtha.2008.08.004 pmid: 18977536
Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571-81. doi: 10.3928/1081597X-20080601-05 pmid: 18581782
Reinstein DZ, Archer TJ, Urs R, Gobbe M, RoyChoudhury A, Silverman RH. Detection of Keratoconus in Clinically and Algorithmically Topographically Normal Fellow Eyes Using Epithelial Thickness Analysis. J Refract Surg. 2015;31(11):736-44. doi: 10.3928/1081597X-20151021-02 pmid: 26544561
Temstet C, Sandali O, Bouheraoua N, Hamiche T, Galan A, El Sanharawi M, et al. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus. J Cataract Refract Surg. 2015;41(4):812-20. doi: 10.1016/j.jcrs.2014.06.043 pmid: 25840306
Pircher N, Schwarzhans F, Holzer S, Lammer J, Schmidl D, Bata AM, et al. Distinguishing Keratoconic Eyes and Healthy Eyes Using Ultrahigh-Resolution Optical Coherence Tomography-Based Corneal Epithelium Thickness Mapping. Am J Ophthalmol. 2018;189:47-54. doi: 10.1016/j.ajo.2018.02.006 pmid: 29458037
Ouanezar S, Sandali O, Atia R, Temstet C, Georgeon C, Laroche L, et al. Contribution of Fourier-domain optical coherence tomography to the diagnosis of keratoconus progression. J Cataract Refract Surg. 2019;45(2):159-66. doi: 10.1016/j.jcrs.2018.09.024 pmid: 30367937
Vega-Estrada A, Mimouni M, Espla E, Alio Del Barrio J, Alio JL. Corneal Epithelial Thickness Intrasubject Repeatability and its Relation With Visual Limitation in Keratoconus. Am J Ophthalmol. 2019;200:255-62. doi: 10.1016/j.ajo.2019.01.015 pmid: 30689987
- Abstract Viewed: 880 times
- Free Full Text PDF Downloaded: 855 times