IVORC
  • Register
  • Login

Medical hypothesis discovery and innovation in ophthalmology

  1. Home
  2. Archives
  3. Vol. 9 No. 3 (2020): Fall 2020
  4. Articles

About the Journal

Editorial Team

Privacy Statement

Contact

Validation of Neural Network Predictions for the Outcome of Refractive Surgery for Myopia

  • Miltos Balidis
  • Ioanna Papadopoulou
  • Dimitris Malandris
  • Zachos Zachariadis
  • Dimitrios Sakellaris
  • Solon Asteriadis
  • Marios Poulos
  • Zisis Gatzioufas
  • George Anogeianakis

Medical hypothesis discovery and innovation in ophthalmology, Vol. 9 No. 3 (2020), 9 June 2020 , Page 172-178
https://doi.org/10.51329/mehdiophthal1405 Published 1 June 2020

  • View Article
  • Download
  • Share

Abstract

Background: Refractive surgery (RS) for myopia has made a very big progress regarding its safety and predictability of the outcome. Still, a small percentage of operations require retreatment. Therefore, both legally and ethically, patients should be informed that sometimes a corrective RS may be required. We addressed this issue using Neural Networks (NN) in RS for myopia. This was a recently developed validation study of a NN. 
Methods: We anonymously searched the Ophthalmica Institute of Ophthalmology and Microsurgery database for patients who underwent RS with PRK, LASEK, Epi-LASIK or LASIK between 2010 and 2018. We used a total of 13 factors related to RS. Data was divided into four sets of successful RS outcomes used for training the NN, successful RS outcomes used for testing the NN performance, RS outcomes that required retreatment used for training the NN and RS outcomes that required retreatment used for testing the NN performance. We created eight independent Learning Vector Quantization (LVQ) networks, each one responding to a specific query with 0 (for the retreat class) or 1 (for the correct class). The results of the 8 LVQs were then averaged so we could obtain a best estimate of the NN performance. Finally, a voting procedure was used to reach to a conclusion.
Results: There was a statistically significant agreement (Cohen’s Kapp = 0.7658) between the predicted and the actual results regarding the need for retreatment. Our predictions had good sensitivity (0.8836) and specificity (0.9186).
Conclusion: We validated our previously published results and confirmed our expectations for the NN we developed. Our results allow us to be optimistic about the future of NNs in predicting the outcome and, eventually, in planning RS.
Validation of Neural Network Predictions for the Outcome of Refractive Surgery for Myopia
  • Full Text PDF
  • Abstract Viewed: 528 times
  • Full Text PDF Downloaded: 290 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

ISSN: 2322-3219

This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
© Copyright 2012-2025, CC BY-NC 4.0. All Rights Reserved.