IVORC
  • Register
  • Login

Medical hypothesis discovery and innovation in ophthalmology

  1. Home
  2. Archives
  3. Vol. 5 No. 4 (2016): Winter 2016
  4. Articles

About the Journal

Editorial Team

Privacy Statement

Contact

Topographic Findings of the Porcine Cornea

  • Jens HEICHEL
  • Frank WILHELM
  • Kathleen S. KUNERT
  • Thomas HAMMER

Medical hypothesis discovery and innovation in ophthalmology, Vol. 5 No. 4 (2016), 1 December 2016 , Page 125-131
Published

  • View Article
  • Download
  • References
  • Share

Abstract

The porcine eye is often used as an ex vivo animal model in ophthalmological research. It is well suited for investigations concerning refractive surgery; however, corneal topography data are scarce. This study investigated the corneal topography and pachymetry of the porcine eye to provide further reproducible data. We evaluated freshly enucleated porcine eyes (n = 16) by performing computerized corneal topographies (Orbscan® IIz, Bausch and Lomb, Rochester, NY, USA). We assessed the steepest and flattest keratometric powers (K1 and K2, units in diopters (D)), astigmatism (D), white-to-white (WTW) diameter (mm), thinnest point pachymetry (µm), anterior and posterior best-fit sphere (BFS) (D), refractive power of the anterior and posterior curvatures, and total refractive power of the cornea (D). The mean keratometric powers were 39.6 ± 0.89 D (K1) and 38.5 ± 0.92 D (K2), and the mean astigmatism was 1.1 ± 0.78 D. The mean WTW diameter was 13.81 ± 0.83 mm, and the mean corneal thickness was 832.6 ± 40.18 µm. The BFSs were 38.14 ± 0.73 D (anterior) and 42.56 ± 1.15 D (posterior), and the mean refractive powers were 43.27 ± 1.08 D (anterior) and -5.15 ± 0.20 D (posterior); therefore, the mean of the total refractive power was 38.16 ± 1.00 D. The topography and pachymetry of the porcine cornea showed a specific configuration differing from the human cornea. When using animal ex vivo models such as porcine corneas for experimental corneal surgery, findings such as these should be considered.
  • PDF

References

Dreyer EB, Volpe NJ. Eleven commandments for teaching ophthalmic surgery. Ophthalmology. 2000;107(3):415-6. PMID: 10711874

Borirak-chanyavat S, Lindquist TD, Kaplan HJ. A cadaveric eye model for practicing anterior and posterior segment surgeries. Ophthalmology. 1995;102(12):1932-5. PMID: 9098298

Liu ES, Eng KT, Braga-Mele R. Using medical lubricating jelly in human cadaver eyes to teach ophthalmic surgery. J Cataract Refract Surg. 2001;27(10):1545-7. PMID: 11687349

Auffarth GU, Wesendahl TA, Solomon KD, Brown SJ, Apple DJ. A modified preparation technique for closed-system ocular surgery of human eyes obtained postmortem: an improved research and teaching tool. Ophthalmology. 1996;103(6):977-82. PMID: 8643258

Shentu X, Tang X, Ye P, Yao K. Combined microwave energy and fixative agent for cataract induction in pig eyes. J Cataract Refract Surg. 2009;35(7):1150-5. PMID: 19545801

van Vreeswijk H, Pameyer JH. Inducing cataract in postmortem pig eyes for cataract surgery training purposes. J Cataract Refract Surg. 1998;24(1):17-8. PMID: 9494893

Fernandez-Bueno I, Pastor JC, Gayoso MJ, Alcalde I, Garcia MT. Muller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina. Mol Vis. 2008;14:2148-56. PMID: 19052655

Ruiz-Ederra J, Garcia M, Hernandez M, Urcola H, Hernandez-Barbachano E, Araiz J, et al. The pig eye as a novel model of glaucoma. Exp Eye Res. 2005;81(5):561-9. PMID: 15949799

Droutsas K, Petrak M, Melles GR, Koutsandrea C, Georgalas I, Sekundo W. A simple ex vivo model for teaching Descemet membrane endothelial keratoplasty. Acta Ophthalmol. 2014;92(5):e362-5. PMID: 24725378

Muller B, Boeck T, Hartmann C. Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy. J Cataract Refract Surg. 2004;30(2):464-70. PMID: 15030843

Medeiros FW, Sinha-Roy A, Alves MR, Dupps WJ, Jr. Biomechanical corneal changes induced by different flap thickness created by femtosecond laser. Clinics (Sao Paulo). 2011;66(6):1067-71. PMID: 21808877

Heichel J, Blum M, Duncker GI, Sietmann R, Kunert KS. Surface quality of porcine corneal lenticules after Femtosecond Lenticule Extraction. Ophthalmic Res. 2011;46(2):107-12. PMID: 21311205

Heichel J, Hammer T, Sietmann R, Duncker GI, Wilhelm F. [Scanning electron microscopic characteristics of lamellar keratotomies using the Femtec femtosecond laser and the Zyoptix XP microkeratome. A comparison of quality]. Ophthalmologe. 2010;107(4):333-40. PMID: 19657659

Chen S, Li Y, Stojanovic A, Zhang J, Wang Y, Wang Q, et al. Evaluation of the efficacy of excimer laser ablation of cross-linked porcine cornea. PLoS One. 2012;7(10):e46232. PMID: 23056269

Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T. Intrastromal application of riboflavin for corneal crosslinking. Invest Ophthalmol Vis Sci. 2014;55(7):4261-5. PMID: 24917136

Kymionis GD, Kontadakis GA, Naoumidi I, Kankariya VP, Panagopoulou S, Manousaki A, et al. Comparative study of stromal bed of LASIK flaps created with femtosecond lasers (IntraLase FS150, WaveLight FS200) and mechanical microkeratome. Br J Ophthalmol. 2014;98(1):133-7. PMID: 24187054

Acosta E, Vazquez D, Castillo LR. Analysis of the optical properties of crystalline lenses by point-diffraction interferometry. Ophthalmic Physiol Opt. 2009;29(3):235-46. PMID: 19422554

Acosta E, Bueno JM, Schwarz C, Artal P. Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses. J Biomed Opt. 2010;15(5):055001. PMID: 21054083

Henderson BA, Grimes KJ, Fintelmann RE, Oetting TA. Stepwise approach to establishing an ophthalmology wet laboratory. J Cataract Refract Surg. 2009;35(6):1121-8. PMID: 19465299

Nishi O, Nishi K, Nishi Y, Chang S. Capsular bag refilling using a new accommodating intraocular lens. J Cataract Refract Surg. 2008;34(2):302-9. PMID: 18242458

Sanchez I, Martin R, Ussa F, Fernandez-Bueno I. The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):475-82. PMID: 21287191

Jay L, Brocas A, Singh K, Kieffer JC, Brunette I, Ozaki T. Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express. 2008;16(21):16284-93. PMID: 18852734

Faber C, Scherfig E, Prause JU, Sørensen KE. Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand J Lab Anim Sci. 2008;35(1):39-43.

Bartholomew LR, Pang DX, Sam DA, Cavender JC. Ultrasound biomicroscopy of globes from young adult pigs. Am J Vet Res. 1997;58(9):942-8. PMID: 9284996

Akura J, Matsuura K, Hatta S, Kaneda S, Kadonosono K. Clinical application of full-arc, depth-dependent, astigmatic keratotomy. Cornea. 2001;20(8):839-43. PMID: 11685062

Pierscionek BK, Asejczyk-Widlicka M, Schachar RA. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol. 2007;91(6):801-3. PMID: 17151057

  • Abstract Viewed: 1963 times
  • PDF Downloaded: 1772 times

Download Statastics

  • Linkedin
  • Twitter
  • Facebook
  • Google Plus
  • Telegram
Open Journal Systems
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo
Information
  • For Readers
  • For Authors
  • For Librarians
  • Home
  • Archives
  • Submissions
  • About the Journal
  • Editorial Team
  • Contact

ISSN: 2322-3219

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

© Copyright 2012-2022, CC BY-NC 4.0. All Rights Reserved.