Mechanisms of Optical Regression Following Corneal Laser Refractive Surgery: Epithelial and Stromal Responses

Majid MOSHIRFAR, Jordan D. DESAUTELS, Brian D. WALKER, Michael S. MURRI, Orry C. BIRDSONG, Phillip C Hoopes, Sr

Abstract


Laser vision correction is a safe and effective method of reducing spectacle dependence. Photorefractive Keratectomy (PRK), Laser In Situ Keratomileusis (LASIK), and Small-Incision Lenticule Extraction (SMILE) can accurately correct myopia, hyperopia, and astigmatism. Although these procedures are nearing optimization in terms of their ability to produce a desired refractive target, the long term cellular responses of the cornea to these procedures can cause patients to regress from the their ideal postoperative refraction. In many cases, refractive regression requires follow up enhancement surgeries, presenting additional risks to patients. Although some risk factors underlying refractive regression have been identified, the exact mechanisms have not been elucidated. It is clear that cellular proliferation events are important mediators of optical regression.  This review focused specifically on cellular changes to the corneal epithelium and stroma, which may influence postoperative visual regression following LASIK, PRK, and SMILE procedures.


References


Patel S, Marshall J, Fitzke FW, 3rd. Refractive index of the human corneal epithelium and stroma. J Refract Surg. 1995;11(2):100-5. pmid: 7634138

Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc. 2003;101:293-333. pmid: 14971584

Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg. 2014;30(3):166-71. doi: 10.3928/1081597X-20140219-01 pmid: 24576651

Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 2004;45(6):1812-6. pmid: 15161844

Hou J, Wang Y, Lei Y, Zheng X, Zhang Y. Corneal Epithelial Remodeling and Its Effect on Corneal Asphericity after Transepithelial Photorefractive Keratectomy for Myopia. J Ophthalmol. 2016;2016:8582362. doi: 10.1155/2016/8582362 pmid: 27672447

Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(5):444-50. pmid: 19507797

Rocha KM, Krueger RR. Spectral-domain optical coherence tomography epithelial and flap thickness mapping in femtosecond laser-assisted in situ keratomileusis. Am J Ophthalmol. 2014;158(2):293-301 e1. doi: 10.1016/j.ajo.2014.04.012 pmid: 24792107

Ivarsen A, Fledelius W, Hjortdal JO. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci. 2009;50(5):2061-6. doi: 10.1167/iovs.08-2853 pmid: 19151379

Chen X, Stojanovic A, Liu Y, Chen Y, Zhou Y, Utheim TP. Postoperative Changes in Corneal Epithelial and Stromal Thickness Profiles After Photorefractive Keratectomy in Treatment of Myopia. J Refract Surg. 2015;31(7):446-53. doi: 10.3928/1081597X-20150623-02 pmid: 26186563

Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology. 2000;107(7):1235-45. pmid: 10889092

Lwigale PY. Corneal Development: Different Cells from a Common Progenitor. Prog Mol Biol Transl Sci. 2015;134:43-59. doi: 10.1016/bs.pmbts.2015.04.003 pmid: 26310148

Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24(10):1442-3. pmid: 6618809

Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2008;24(6):571-81. pmid: 18581782

Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89(5):529-32. doi: 10.1136/bjo.2004.049742 pmid: 15834076

Castro-Munozledo F. Review: corneal epithelial stem cells, their niche and wound healing. Mol Vis. 2013;19:1600-13. pmid: 23901244

Wilson SE, Mohan RR, Hong JW, Lee JS, Choi R, Mohan RR. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001;119(6):889-96. pmid: 11405841

Ogasawara K, Onodera T. Residual stromal bed thickness correlates with regression of myopia after LASIK. Clin Ophthalmol. 2016;10:1977-81. doi: 10.2147/OPTH.S116498 pmid: 27784987

Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2010;26(8):555-64. doi: 10.3928/1081597X-20091105-02 pmid: 19928697

Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg. 2012;28(3):195-201. doi: 10.3928/1081597X-20120127-02 pmid: 22301100

Huang D, Tang M, Shekhar R. Mathematical model of corneal surface smoothing after laser refractive surgery. Am J Ophthalmol. 2003;135(3):267-78. pmid: 12614741

Dierick HG, Missotten L. Is the corneal contour influenced by a tension in the superficial epithelial cells? A new hypothesis. Refract Corneal Surg. 1992;8(1):54-9; discussion 60. pmid: 1554640

Reinstein DZ, Archer TJ, Gobbe M. Rate of change of curvature of the corneal stromal surface drives epithelial compensatory changes and remodeling. J Refract Surg. 2014;30(12):799-802. doi: 10.3928/1081597X-20141113-02 pmid: 25437477

Ganesh S, Brar S, Relekar KJ. Epithelial Thickness Profile Changes Following Small Incision Refractive Lenticule Extraction (SMILE) for Myopia and Myopic Astigmatism. J Refract Surg. 2016;32(7):473-82. doi: 10.3928/1081597X-20160512-01 pmid: 27400079

Santhiago MR, Netto MV, Wilson SE. Mitomycin C: biological effects and use in refractive surgery. Cornea. 2012;31(3):311-21. doi: 10.1097/ICO.0b013e31821e429d pmid: 22157595

Reinstein DZ, Gobbe M, Archer TJ, Silverman RH, Coleman DJ. Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J Refract Surg. 2010;26(4):259-71. doi: 10.3928/1081597X-20100218-01 pmid: 20415322

Plaza-Puche AB, Yebana P, Arba-Mosquera S, Alio JL. Three-Year Follow-up of Hyperopic LASIK Using a 500-Hz Excimer Laser System. J Refract Surg. 2015;31(10):674-82. doi: 10.3928/1081597X-20150928-06 pmid: 26469075

Pinnamaneni N, Funderburgh JL. Concise review: Stem cells in the corneal stroma. Stem Cells. 2012;30(6):1059-63. doi: 10.1002/stem.1100 pmid: 22489057

Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42(2):333-9. pmid: 11157863

Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ. Stromal thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25(9):776-86. doi: 10.3928/1081597X-20090813-04 pmid: 19772263

Zieske JD, Guimaraes SR, Hutcheon AE. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res. 2001;72(1):33-9. doi: 10.1006/exer.2000.0926 pmid: 11133180

Vereb Z, Poliska S, Albert R, Olstad OK, Boratko A, Csortos C, et al. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing. Sci Rep. 2016;6:26227. doi: 10.1038/srep26227 pmid: 27195722

Barbosa FL, Chaurasia SS, Cutler A, Asosingh K, Kaur H, de Medeiros FW, et al. Corneal myofibroblast generation from bone marrow-derived cells. Exp Eye Res. 2010;91(1):92-6. doi: 10.1016/j.exer.2010.04.007 pmid: 20417632

Morgan SR, Dooley EP, Kamma-Lorger C, Funderburgh JL, Funderburgh ML, Meek KM. Early wound healing of laser in situ keratomileusis-like flaps after treatment with human corneal stromal stem cells. J Cataract Refract Surg. 2016;42(2):302-9. doi: 10.1016/j.jcrs.2015.09.023 pmid: 27026456

Liu YC, Ang HP, Teo EP, Lwin NC, Yam GH, Mehta JS. Wound healing profiles of hyperopic-small incision lenticule extraction (SMILE). Sci Rep. 2016;6:29802. doi: 10.1038/srep29802 pmid: 27418330

Maycock NJ, Marshall J. Genomics of corneal wound healing: a review of the literature. Acta Ophthalmol. 2014;92(3):e170-84. doi: 10.1111/aos.12227 pmid: 23819758

Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr Eye Res. 1998;17(7):736-47. pmid: 9678420

Kim WJ, Mohan RR, Mohan RR, Wilson SE. Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea. Invest Ophthalmol Vis Sci. 1999;40(7):1364-72. pmid: 10359318

Wilson SE, Chen L, Mohan RR, Liang Q, Liu J. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. Exp Eye Res. 1999;68(4):377-97. doi: 10.1006/exer.1998.0603 pmid: 10192796

Gonzalez-Perez J, Villa-Collar C, Gonzalez-Meijome JM, Porta NG, Parafita MA. Long-term changes in corneal structure and tear inflammatory mediators after orthokeratology and LASIK. Invest Ophthalmol Vis Sci. 2012;53(9):5301-11. doi: 10.1167/iovs.11-9155 pmid: 22789928

Gardner SJ, White N, Albon J, Knupp C, Kamma-Lorger CS, Meek KM. Measuring the Refractive Index of Bovine Corneal Stromal Cells Using Quantitative Phase Imaging. Biophys J. 2015;109(8):1592-9. doi: 10.1016/j.bpj.2015.08.046 pmid: 26488650

Patel S, Alio JL, Perez-Santonja JJ. Refractive index change in bovine and human corneal stroma before and after lasik: a study of untreated and re-treated corneas implicating stromal hydration. Invest Ophthalmol Vis Sci. 2004;45(10):3523-30. doi: 10.1167/iovs.04-0179 pmid: 15452058

Weng J, Mohan RR, Li Q, Wilson SE. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 beta expression in the cornea. Cornea. 1997;16(4):465-71. pmid: 9220246

Torricelli AA, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci. 2013;54(9):6390-400. doi: 10.1167/iovs.13-12547 pmid: 24078382

Marino GK, Santhiago MR, Torricelli AA, Santhanam A, Wilson SE. Corneal Molecular and Cellular Biology for the Refractive Surgeon: The Critical Role of the Epithelial Basement Membrane. J Refract Surg. 2016;32(2):118-25. doi: 10.3928/1081597X-20160105-02 pmid: 26856429

Tomas-Juan J, Murueta-Goyena Larranaga A, Hanneken L. Corneal Regeneration After Photorefractive Keratectomy: A Review. J Optom. 2015;8(3):149-69. doi: 10.1016/j.optom.2014.09.001 pmid: 25444646

Patel DV, McGhee CN. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci. 2005;46(12):4485-8. doi: 10.1167/iovs.05-0794 pmid: 16303938

Yang L, Di G, Qi X, Qu M, Wang Y, Duan H, et al. Substance P promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated via the neurokinin-1 receptor. Diabetes. 2014;63(12):4262-74. doi: 10.2337/db14-0163 pmid: 25008176

Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85-9. pmid: 18269156

Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res. 2013;115:41-6. doi: 10.1016/j.exer.2013.06.004 pmid: 23800511

Smadja D, Santhiago MR, Mello GR, Roberts CJ, Dupps WJ, Jr., Krueger RR. Response of the posterior corneal surface to myopic laser in situ keratomileusis with different ablation depths. J Cataract Refract Surg. 2012;38(7):1222-31. doi: 10.1016/j.jcrs.2012.02.044 pmid: 22727291

Chan TC, Liu D, Yu M, Jhanji V. Longitudinal evaluation of posterior corneal elevation after laser refractive surgery using swept-source optical coherence tomography. Ophthalmology. 2015;122(4):687-92. doi: 10.1016/j.ophtha.2014.10.011 pmid: 25487425


Full Text: Full Text PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.