Cover Image

Role of Schwann Cells in Preservation of Retinal Tissue Through Reduction of Oxidative Stress

Alireza Lashay, Raziyeh Mahmoudzadeh, Saeed Heidari Keshel, Asieh Naderi, Roghiyeh Omidi, Fahimeh Asadi Amoli


The aim of this study was to evaluate the effect of subretinal injection of Schwann cells on preservation of retina by decreasing oxidative stress in Dystrophic Royal College of Surgeons (RCS) rats. Schwann cells were harvested from the sciatic nerve of postnatal day 5, RCS rats. Twenty-five RCS rats randomly assigned to cell and sham groups. Schwann cells injected in the sub-retinal space in one eye of the cell group and carrier medium was injected in one eye of the sham group. The proof for the appropriate site of injection of Schwann cells confirmed by the green fluorescent protein (GFP) positive cells. Electroretinogram (ERG) and enucleation for histopathology and enzymatic evaluation were performed 1, 2 and 3 months post-injection. The enzymatic evaluation included catalase, superoxide dismutase (SOD) and glutathione peroxidase 1 (GPx1) by enzyme-linked immunosorbent assay (ELISA) method. Three months after injection, histopathology assessments showed a complete absence of the outer nuclear layer (ONL), photoreceptors and obvious reduction of retinal pigment epithelium (RPE) in the sham group. Cell group showed marked preservation of RPE, choroidal congestion and mild presence of ONL. The green fluorescent protein positive Schwann cells remained in one integrated layer during the study under RPE. The enzymatic evaluation showed that in cell group expression of SOD and GPx1 until month 2 and catalase until month 1 were significantly more than the sham group. At the end of month 3, the amplitude of ERG waves significantly preserved in cell group in comparison to baseline waves and the sham group. We concluded that Schwan cells are able to preserve retinal in RCS rats by reducing oxidative stress. Epub: October 1, 2019.


Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep. 2006;58(3):353-63. pmid: 16845209

Milam AH, Li Z-Y, Fariss RN. Histopathology of the human retina in retinitis pigmentosa. Progr Retinal Eye Res. 1998;17(2):175-205.

Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264(5165):1604-8. doi: 10.1126/science.8202715 pmid: 8202715

Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38(7):450-71. doi: 10.1080/07853890600946724 pmid: 17101537

Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564-72. doi: 10.1001/archopht.122.4.564 pmid: 15078675

Beatty S, Koh H-H, Phil M, Henson D, Boulton M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv Ophthalmol. 2000;45(2):115-34. doi: 10.1016/s0039-6257(00)00140-5

Cai J, Nelson KC, Wu M, Sternberg P, Jones DP. Oxidative damage and protection of the RPE. Progr Retinal Eye Res. 2000;19(2):205-21. doi: 10.1016/s1350-9462(99)00009-9

Klein R, Klein BE, Jensen SC, Cruickshanks KJ, Lee KE, Danforth LG, et al. Medication use and the 5-year incidence of early age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthalmol. 2001;119(9):1354-9. doi: 10.1001/archopht.119.9.1354 pmid: 11545642

Smith W, Mitchell P, Leeder SR. Smoking and age-related maculopathy. The Blue Mountains Eye Study. Arch Ophthalmol. 1996;114(12):1518-23. doi: 10.1001/archopht.1996.01100140716016 pmid: 8953988

van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC, Hofman A, et al. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA. 2005;294(24):3101-7. doi: 10.1001/jama.294.24.3101 pmid: 16380590

Frasson M, Picaud S, Leveillard T, Simonutti M, Mohand-Said S, Dreyfus H, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci. 1999;40(11):2724-34. pmid: 10509671

Akimoto M, Miyatake S, Kogishi J, Hangai M, Okazaki K, Takahashi JC, et al. Adenovirally expressed basic fibroblast growth factor rescues photoreceptor cells in RCS rats. Invest Ophthalmol Vis Sci. 1999;40(2):273-9. pmid: 9950584

McGill TJ, Lund RD, Douglas RM, Wang S, Lu B, Prusky GT. Preservation of vision following cell-based therapies in a model of retinal degenerative disease. Vision Res. 2004;44(22):2559-66. doi: 10.1016/j.visres.2004.05.025 pmid: 15358071

Lund RD, Adamson P, Sauve Y, Keegan DJ, Girman SV, Wang S, et al. Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A. 2001;98(17):9942-7. doi: 10.1073/pnas.171266298 pmid: 11504951

Jiang LQ, Jorquera M, Streilein JW, Ishioka M. Unconventional rejection of neural retinal allografts implanted into the immunologically privileged site of the eye. Transplantation. 1995;59(8):1201-7. pmid: 7732567

Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 2005;6(9):671-82. doi: 10.1038/nrn1746 pmid: 16136171

Kamada T, Koda M, Dezawa M, Yoshinaga K, Hashimoto M, Koshizuka S, et al. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol. 2005;64(1):37-45. doi: 10.1093/jnen/64.1.37 pmid: 15715083

Bachelin C, Lachapelle F, Girard C, Moissonnier P, Serguera-Lagache C, Mallet J, et al. Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain. 2005;128(Pt 3):540-9. doi: 10.1093/brain/awh406 pmid: 15689363

Lawrence JM, Sauve Y, Keegan DJ, Coffey PJ, Hetherington L, Girman S, et al. Schwann cell grafting into the retina of the dystrophic RCS rat limits functional deterioration. Royal College of Surgeons. Invest Ophthalmol Vis Sci. 2000;41(2):518-28. pmid: 10670484

D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645-51. doi: 10.1093/hmg/9.4.645 pmid: 10699188

Eisenfeld AJ, LaVail MM, LaVail JH. Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells. J Comp Neurol. 1984;223(1):22-34. doi: 10.1002/cne.902230103 pmid: 6200511

Cuenca N, Pinilla I, Sauve Y, Lund R. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci. 2005;22(5):1057-72. doi: 10.1111/j.1460-9568.2005.04300.x pmid: 16176347

Larsson J, Juliusson B, Ehinger B. Survival and MHC-expression of embryonic retinal transplants in the choroid. Acta Ophthalmol Scand. 1998;76(4):417-21. pmid: 9716327

Sendtner M, Stockli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol. 1992;118(1):139-48. doi: 10.1083/jcb.118.1.139 pmid: 1618901

Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol. 1992;119(1):45-54. doi: 10.1083/jcb.119.1.45 pmid: 1527172

Hammarberg H, Piehl F, Cullheim S, Fjell J, Hokfelt T, Fried K. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport. 1996;7(4):857-60. doi: 10.1097/00001756-199603220-00004 pmid: 8724660

Vincent AM, Kato K, McLean LL, Soules ME, Feldman EL. Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal. 2009;11(3):425-38. doi: 10.1089/ars.2008.2235 pmid: 19072199

Mahmoudzadeh R, Heidari-Keshel S, Lashay A. Schwann Cell-Mediated Preservation of Vision in Retinal Degenerative Diseases via the Reduction of Oxidative Stress: A Possible Mechanism. Med Hypothesis Discov Innov Ophthalmol. 2016;5(2):47-52. pmid: 28293647

Wilby MJ, Sinclair SR, Muir EM, Zietlow R, Adcock KH, Horellou P, et al. A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci. 1999;19(6):2301-12. pmid: 10066280

McGill TJ, Lund RD, Douglas RM, Wang S, Lu B, Silver BD, et al. Syngeneic Schwann cell transplantation preserves vision in RCS rat without immunosuppression. Invest Ophthalmol Vis Sci. 2007;48(4):1906-12. doi: 10.1167/iovs.06-1117 pmid: 17389527

Atalla LR, Sevanian A, Rao NA. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988;7(10):1023-7. pmid: 3067981

Atalla L, Fernandez MA, Rao NA. Immunohistochemical localization of catalase in ocular tissue. Current Eye Research. 2009;6(10):1181-7. doi: 10.3109/02713688709025227 pmid: 3500016

Frank RN, Amin RH, Puklin JE. Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration11This article is derived from a thesis accepted by the American Ophthalmological Society: Frank RN. Antioxidant enzymes in the macular retinal pigment epithelium of eyes with neovascular age-related macular degeneration. Am J Ophthalmol. 1999;127(6):694-709. doi: 10.1016/s0002-9394(99)00032-x

Tate DJ, Jr., Miceli MV, Newsome DA. Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995;36(7):1271-9. pmid: 7775104

Neuberger TJ, De Vries GH. Distribution of fibroblast growth factor in cultured dorsal root ganglion neurons and Schwann cells. II. Redistribution after neural injury. J Neurocytol. 1993;22(6):449-60. pmid: 7688414

Keegan DJ, Kenna P, Humphries MM, Humphries P, Flitcroft DI, Coffey PJ, et al. Transplantation of syngeneic Schwann cells to the retina of the rhodopsin knockout (rho(-/-)) mouse. Invest Ophthalmol Vis Sci. 2003;44(8):3526-32. doi: 10.1167/iovs.02-0097 pmid: 12882803

Full Text: Full Text PDF. Epub:Oct. 1, 2019

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.